首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 62 毫秒
1.
近年来, 基于生成对抗网络的高光谱图像分类方法取得了很大进展. 它们虽可以缓解训练样本数量有限的问题, 但是容易受到训练数据不平衡的影响, 并且存在模式崩溃问题. 针对这些问题, 提出了一种用于高光谱图像分类的SPCA-AD-WGAN模型. 首先, 为了解决训练数据不平衡导致分类精度降低的问题, 添加了单独的分类器, 与判别器分开训练. 其次, 将Wasserstein距离引入网络, 以缓解GAN模型崩溃的问题; 在两个HSI数据集上的实验结果表明, SPCA-AD-WGAN具有更好的分类性能.  相似文献   

2.
针对传统鉴别器的损失策略和结构难以提取到更抽象以及任务相关的鲁棒性特征,从而导致半监督图像分类表现不足,提出了基于特征重标定的生成对抗网络。为了学习到任务相关的特征,在现有半监督GAN的基础上,为鉴别器引入模型在不同状态下的无监督均方差损失正则项,对训练样本中两个分支的同一输入对应得到的不同输出进行参数惩罚,从而指导特征重标定的优化方向。此外,在鉴别器中加入压缩激活模块来优化传统鉴别器的卷积池化结构。该模块自动学习每一个特征通道的重要程度,能够提取任务相关的特征抑制任务无关的特征,实现特征的重标定功能,从而提高半监督图像分类的表现。  相似文献   

3.
自生成对抗网络(GANs)诞生以来,对其研究已经成为机器学习领域的一个热点。它利用对抗学习的机制训练模型,解决了当年生成算法无法解决的问题。由于GANs的优势,研究者们对其进行深入的研究,产生了许多GANs的衍生模型,这使得GANs得到了快速的发展,形成了所谓的GAN-Zoo。GANs被广泛应用于视觉领域、音频领域、自然语言领域及其他各种领域中,如图像生成、图像翻译、文本生成、音频转换和自然语言翻译等。从传统GANs出发,对近几年内GANs的研究中较为突出的方面进行总结,首先介绍了传统GANs的基本理论,然后对近年来GANs的主要衍生模型进行分析,最后总结了GANs在图像领域和信息安全领域中的主要应用成果。  相似文献   

4.
目的 图像信息隐藏包括图像隐写术和图像水印技术两个分支。隐写术是一种将秘密信息隐藏在载体中的技术,目的是为了实现隐秘通信,其主要评价指标是抵御隐写分析的能力。水印技术与隐写术原理类似,但其是通过把水印信息嵌入到载体中以达到保护知识产权的作用,追求的是防止水印被破坏而尽可能地提高水印信息的鲁棒性。研究者们试图利用生成对抗网络(generative adversarial networks,GANs)进行自动化的隐写算法以及鲁棒水印算法的设计,但所设计的算法在信息提取准确率、嵌入容量和隐写安全性或水印鲁棒性、水印图像质量等方面存在不足。方法 本文提出了基于生成对抗网络的新型端到端隐写模型(image information hiding-GAN,IIH-GAN)和鲁棒盲水印模型(image robust blind watermark-GAN,IRBW-GAN),分别用于图像隐写术和图像鲁棒盲水印。网络模型中使用了更有效的编码器和解码器结构SE-ResNet(squeeze and excitation ResNet),该模块根据通道之间的相互依赖性来自适应地重新校准通道方式的特征响应。结果 实验结果表明隐写模型IIH-GAN相对其他方法在性能方面具有较大改善,当已知训练好的隐写分析模型的内部参数时,将对抗样本加入到IIH-GAN的训练过程,最终可以使隐写分析模型的检测准确率从97.43%降低至49.29%。该隐写模型还可以在256×256像素的图像上做到高达1 bit/像素(bits-per-pixel)的相对嵌入容量;IRBW-GAN水印模型在提升水印嵌入容量的同时显著提升了水印图像质量以及水印提取正确率,在JEPG压缩的攻击下较对比方法提取准确率提高了约20%。结论 本文所提IIH-GAN和IRBW-GAN模型在图像隐写和图像水印领域分别实现了领先于对比模型的性能。  相似文献   

5.
为挖掘高光谱遥感图像的深层光谱特征,获取优化特征空间以提高分类准确率,提出了一种基于视觉词典和复杂网络的高光谱遥感图像分类的光谱特征提取方法.通过改进视觉词典方法,使用K-Means方法计算各类样本的聚类中心作为词典,并计算各待测试样本的光谱像素值与词典光谱向量中相同光谱波段的差值,计算出单个待测样本点的词频直方图.同...  相似文献   

6.
基于条件Wassertein生成对抗网络的图像生成   总被引:1,自引:0,他引:1  
生成对抗网络(GAN)能够自动生成目标图像,对相似地块的建筑物排布生成具有重要意义.而目前训练模型的过程中存在生成图像精度不高、模式崩溃、模型训练效率太低的问题.针对这些问题,提出了一种面向图像生成的条件Wassertein生成对抗网络(C-WGAN)模型.首先,该模型需要识别真实样本和目标样本之间特征对应关系,然后,...  相似文献   

7.
目的 深度神经网络在高光谱图像分类任务中表现出明显的优越性,但是对抗样本的出现使其鲁棒性受到严重威胁,对抗训练方法为深度神经网络提供了一种有效的保护策略,但是在有限标记样本下提高目标网络的鲁棒性和泛化能力仍然需要进一步研究。为此,本文提出了一种面向高光谱图像分类网络的对比半监督对抗训练方法。方法 首先,根据少量标记样本预训练目标模型,并同时利用少量标记样本和大量无标记样本构建训练样本集合;然后,通过最大化训练样本集合中干净样本和对抗样本在目标模型上的特征差异生成高迁移性对抗样本;最后,为了减少对抗训练过程对样本标签的依赖以及提高目标模型对困难对抗样本的学习和泛化能力,充分利用目标模型和预训练模型的输出层及中间层特征,构建对比对抗损失函数对目标模型进行优化,提高目标模型的对抗鲁棒性。对抗样本生成和目标网络优化过程交替进行,并且不需要样本标签的参与。结果 在 PaviaU 和 Indian Pines 两组高光谱图像数据集上与主流的 5 种对抗训练方法进行了比较,本文方法在防御已知攻击和多种未知攻击上均表现出明显的优越性。面对 6 种未知攻击,相比于监督对抗训练方法 AT(adversarial training)和 TRADES(trade-offbetween robustness and accuracy),本文方法分类精度在两个数据集上平均提高了 13. 3% 和 16%,相比于半监督对抗训练方法 SRT(semi-supervised robust training)、RST(robust self-training)和 MART(misclassification aware adversarialrisk training),本文方法分类精度再两个数据集上平均提高了 5. 6% 和 4. 4%。实验结果表明了提出模型的有效性。结论 本文方法能够在少量标记样本下提高高光谱图像分类网络的防御性能。  相似文献   

8.
为解决夜间低照度条件下目标检测准确率偏低的问题,提出一种基于循环生成对抗网络的高照度可见光图像生成方法。为提高生成器提取特征的能力,在转换器模块引入CBAM注意力模块;为避免在生成图像中产生伪影的噪声干扰,把生成器解码器的反卷积方式改为最近邻插值加卷积层的上采样方式;为了提高网络训练的稳定性,把对抗损失函数由交叉熵函数换为最小二乘函数。生成的可见光图像与红外图像、夜间可见光图像相比,在光谱信息、细节信息丰富和可视性方面取得好的优势提升,能够有效地获取目标和场景的信息。分别通过图像生成指标和目标检测指标验证该方法的有效性,其中对生成可见光图像测试得到的mAP较红外图像和真实可见光图像分别提高了11.7个百分点和30.2个百分点,可以有效提高对夜间目标的检测准确率和抗干扰能力。  相似文献   

9.
在实际应用中, 为分类模型提供大量的人工标签越来越困难, 因此, 近几年基于半监督的图像分类问题获得了越来越多的关注.而大量实验表明, 在生成对抗网络(Generative adversarial network, GANs)的训练过程中, 引入少量的标签数据能获得更好的分类效果, 但在该类模型的框架中并没有考虑用于提取图像特征的结构, 为了进一步利用其模型的学习能力, 本文提出一种新的半监督分类模型.该模型在原生成对抗网络模型中添加了一个编码器结构, 用于直接提取图像特征, 并构造了一种新的半监督训练方式, 获得了突出的分类效果.本模型分别在标准的手写体识别数据库MNIST、街牌号数据库SVHN和自然图像数据库CIFAR-10上完成了数值实验, 并与其他半监督模型进行了对比, 结果表明本文所提模型在使用少量带标数据情况下得到了更高的分类精度.  相似文献   

10.
保密增强是指通信双方在共享一个部分保密的串S且敌手只知道该串的部分信息的情况下,通过在公共信道上进行协商来提取一个更短的但是保密度更高的串S',使敌手得知关于S '的信息几乎可以忽略.近期人们使用生成对抗网络(GANs)实现了存在敌手的安全通信.主要研究了敌手能力有限时,利用生成对抗网络实现保密增强的问题.首先提出了保密增强的实现场景,通信双方利用交流信息产生密钥,敌手监听交流信息.然后参考Abadi等人的基本加密通信模型中的神经网络结构,设计了保密增强的通信模型.实验测试了在敌手获知部分信息或敌手计算能力较弱时的保密增强通信.经过修改激活函数和过滤器,以及增加模型复杂度,最终结果表明,在敌手获知70%的通信信息时,或者通信方比敌手模型复杂时,通信双方均能协商出一个安全的密钥,完成保密增强的功能.  相似文献   

11.
针对逆强化学习算法在训练初期由于专家样本稀疏所导致的学习速率慢的问题,提出一种基于生成对抗网络(Generative Adversarial Networks,GAN)的最大熵逆强化学习算法。在学习过程中,结合专家样本训练优化生成对抗网络,以生成虚拟专家样本,在此基础上利用随机策略生成非专家样本,构建混合样本集,结合最大熵概率模型,对奖赏函数进行建模,并利用梯度下降方法求解最优奖赏函数。基于所求解的最优奖赏函数,利用正向强化学习方法求解最优策略,并在此基础上进一步生成非专家样本,重新构建混合样本集,迭代求解最优奖赏函数。将所提出的算法与MaxEnt IRL算法应用于经典的Object World与Mountain Car问题,实验表明,该算法在专家样本稀疏的情况下可以较好地求解奖赏函数,具有较好的收敛性能。  相似文献   

12.
在生成式对抗网络的对抗训练中,目标样本训练集不足会导致模型无法准确学习到对应的特征,但对于需要人工制作、标记的目标样本训练集又很难获取。针对这一问题,提出了基于迁移学习的双层生成式对抗网络模型,在第一层网络中通过伪目标样本让模型学习到目标样本在结构空间的大致分布后,利用迁移学习的思想进行模型迁移,并在第二层网络中根据少量目标样本进行调整。实验中,验证了该模型在中文字体生成与图片框架图转换中的提高,有效地在少量目标样本训练集中训练出更好的模型。  相似文献   

13.
为了有效地修复大面积破损的面部图像,使用了解码器-编码器结构的卷积神经网络作为生成模型,并在其部分层之间增加skip-connection,以增强生成模型的结构信息预测能力,同时引入对抗训练策略优化生成模型。该模型首先训练一个判别模型识别真实图像,再利用其判别待修复图像输入生成模型后所得到的输出是否为真实,以此为生成模型提供优化梯度。结合了卷积神经网络的结构信息预测能力和GANs对抗策略的优化能力,提高了图像补全的效果。在CelebA人脸数据集上进行的实验结果表明,该方法在补全大面积破损的图像任务上性能明显优于其他方法。  相似文献   

14.
针对传统图像超分辨率重建算法存在网络训练困难与生成图像存在伪影的问题,提出一种利用生成式对抗网络的超分辨率重建算法.去除生成式对抗网络的批量归一化层降低计算复杂度,将其中的残差块替换为密集残差块构成生成网络,使用VGG19网络作为判别网络的基础框架,以全局平均池化代替全连接层防止过拟合,引入纹理损失函数、感知损失函数、...  相似文献   

15.
在傅里叶频域中,由于逆滤波对加性噪声特别敏感,使得恢复后的图像仍然非常模糊.针对这一问题,我们提出了一种基于维纳滤波器和生成对抗网络的动态模糊图像处理方法.首先使用维纳滤波去模糊算法,通过均方差最小化去除噪声,但由于无法判断拍摄装置的移动范围并未得到预期效果.再考虑使用自由性强、不受预定条件分布的生成对抗网络模型(GAN).定义一个类生成器Gy)和类判别器Dx),通过机器学习的方式进行反复学习和反馈,直至达到模型无法判别生成数据样本Sy)和真实数据样本rx)时,图像近似还原成功.同时,引入“模糊核”概念,模拟图像的模糊轨迹,进行精确还原.最后,由于肉眼很难对图像的还原程度做定量判断.因此我们利用三个评价指标对这些图像进行客观评价——峰值性噪比PSNR、模糊系数KBlur、质量因素Q.实验结果表明,在该方法下的图像的三个评价指标在一定程度上有所改善,从而得到图像还原较为成功的结论.  相似文献   

16.
孙全  曾晓勤 《计算机科学》2018,45(12):229-234, 261
针对现有图像修复算法存在受损区域的形状和大小受限以及修复痕迹明显、修复边缘不连续的问题,文中提出一种基于生成对抗网络的图像修复方法。该方法采用生成对抗网络(Generative Adversarial Networks,GAN)这种新的生成模型作为基本架构,结合Wasserstein距离,同时融入条件对抗网络(CGAN)的思想;以破损图像作为附加条件信息,采用对抗损失与内容损失相结合的方式来训练网络模型,以修复破损区域。此方法能够修复大多数破损情况下的图像。在CelebA和LFW两个数据集上的实验结果表明,所提方法能够取得很好的修复效果。  相似文献   

17.
步态是一种能够在远距离、非侵犯的条件下识别身份的生物特征,但在实际场景中,步态很容易受到拍摄视角、行走环境、物体遮挡、着装等因素的影响.在跨视角识别问题上,现有方法只注重将多种视角的步态模板转化到固定视角下,且视角跨度的增大加深了错误的累积.为了提取有效的步态特征用于跨视角步态识别,本文提出了一种基于生成对抗网络的跨视角步态特征提取方法,该方法只需训练一个模型即可将步态模板转换到任意视角下的正常行走状态,并最大化地保留原本的身份特征信息,从而提高步态识别的准确率.在CASIA-B和OUMVLP数据集上的实验结果表明,该方法在解决跨视角步态识别问题上具有一定的鲁棒性和可行性.  相似文献   

18.
生成对抗网络的理论研究与应用不断获得成功,已经成为当前深度学习领域研究的热点之一.对生成对抗网络理论及其应用从模型的类型、评价标准和理论研究进展等方面进行系统的综述:分别分析基于显式密度和基于隐式密度的生成模型的优缺点;总结生成对抗网络的评价标准,解读各标准之间的关系,并从应用层面介绍生成对抗网络在图像及其他领域中的研...  相似文献   

19.
为了方便网络传输和本地存储需对大量音频文件进行压缩处理,但获取存储空间下降的同时会牺牲相应的音质。针对音频最常使用的MPEG-1Layer3有损压缩方法,即mp3文件,使用ASRGAN(Audio Super-Resolution Generative Adversarial Nets)对码率下降的音频进行音质还原,使用生成模型和判别模型相互促进学习,并进行交叠加权处理,同时使用空洞卷积和双向循环网络增强整体网络对超长序列处理的能力,最终选出最优的音频提升模型。该方法减小了音频传输和存储所使用的网络带宽和存储容量,同时还能够获得较好的音质。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号