首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
通过改进FRAPCON-2程序中的燃料导热系数模型和裂变气体释放模型,使之能对高燃耗的燃料进行性能分析计算。并利用Halden堆IFA 597.3 ROD8的试验数据对程序进行了验证。结果表明,改进后的程序所计算出的参数(如燃料温度和裂变气体释放份额)均与实测值符合很好,对程序的改进是成功的。  相似文献   

2.
为促进气馈式碱金属热电转换装置(AMTEC)的设计与性能评价,基于气馈式AMTEC压力模型、电模型、热模型,开发了气馈式AMTEC热电转换性能分析程序,以SAIRS-C空间电源中AMTEC模块作为计算对象,计算其输出电功率、热电转换效率、负荷跟踪特性等性能参数。结果表明,该方法所得输出电功率、热电转换效率参数与文献曲线变化趋势基本一致,但负荷跟踪特性等计算值与文献值存在一定偏差。该方法适用于气馈式AMTEC元件性能分析与评价,应用于元件设计时,程序需进一步改进。  相似文献   

3.
《核动力工程》2016,(1):34-37
使用RELAP5/MOD3.2程序对某型核动力装置二次侧非能动余热排出系统(PRS)1:1实验装置进行稳态计算,一些工况下计算结果同实验结果偏差较大。研究了汽-液界面剪切应力及系统高压等条件对层流和湍流状态下竖直管内蒸汽凝结模型的影响,并对模型进行了改进。改进后的RELAP5程序对该系统1:1实验装置进行稳态和瞬态计算,计算结果同实验结果符合良好。  相似文献   

4.
采用两相计算流体动力学(CFD)方法进行带7道格架的5×5棒束两相性能研究,其中结构搅混格架(MG)和跨间搅混格架(MSMG)交替布置,计算考虑汽泡合并与破裂、热量传递,但不考虑相间的质量传递。为选择合理的两相模型参数,首先以带2道格架(MG、MSMG)的AFA3G燃料组件5×5棒束架为研究对象,对最大气泡直径、汽泡合并破裂系数、非曳力模型及曳力模型、入口气泡直径、入口空泡份额分布等进行了敏感性及不确定性分析。此后采用该两相模型设置,针对带7道格架的AFA3G燃料组件进行了两相性能研究,计算结果显示格架间的各项参数不存在完全一致的周期性,但同种格架上游的空泡份额分布具有一定的相似性,因此用于两相性能评价可计算带2~3道格架的棒束,该研究可用于带格架棒束两相计算的模型设置与几何规模选择,为下一步采用两相CFD计算建立燃料组件热工水力性能评价准则奠定了基础。最后比较了AFA3G燃料组件及改进型燃料组件两种格架的空泡分布特性,并从提高燃料组件临界热流密度(CHF)特性的角度对其进行评价,获得与实验一致的结论,证明了评价方法的正确性。   相似文献   

5.
为研究棒束通道内临界热流密度现象,采用基于对气、液两相分别建立基本守恒方程的欧拉两流体六方程模型和改进的壁面热流密度分配模型,利用CFD商用软件FLUENT 14.5对捷克大型水介质实验回路上开展的临界热流密度(CHF)实验进行数值模拟。通过计算获得CHF发生前、后计算域内重要热工水力参数的分布及CHF发生值,将CFD计算获得的CHF与实验测得值进行对比,结果表明,大多数工况的偏差在±30%以内,证明了欧拉两流体模型结合改进的壁面热流密度分配模型对CHF预测的准确性。本研究可为复杂结构的CHF预测提供依据。  相似文献   

6.
以欧洲铅冷堆(ELSY)水平螺旋管式蒸汽发生器(HST-SG)为研究对象,结合其结构参数和运行参数,选取了合适的传热阻力模型开发了一维稳态热工水力计算程序,采用该程序首先对ELSY HST-SG进行校核计算,以验证程序计算的准确性,再结合计算结果,对ELSY HST-SG热工水力性能进行详细分析,并针对不同运行参数开展对比分析研究。分析结果表明,ELSY HST-SG各项参数选择合理,热工水力性能优良,结构紧凑。因此,该程序可用于ELSY HST-SG的设计开发和性能分析。   相似文献   

7.
采用计算流体动力学(CFD)分析方法模拟了含一根弯曲燃料棒(简称“弯曲棒”)的5×5全长燃料棒束内的沸腾传热现象。基于欧拉两流体模型和改进的壁面沸腾模型进行计算,并基于压水堆子通道和棒束实验( PSBT )基准题中的试验数据对计算方法进行了验证,计算所得截面平均空泡份额与试验数据吻合良好,说明了现有计算方法的可靠性。基于计算结果考察了弯曲棒对棒束通道内流场、温度场、空泡份额等关键参数的影响。研究结果表明,弯曲棒的存在对截面横向流动、流体温度、空泡份额等均未产生显著影响,但弯曲棒表面温度增加,气泡也易发生聚集,增加了发生临界热流密度(CHF)的风险。   相似文献   

8.
针对氦-氙混合气体热物性参数的研究匮乏问题,对氦-氙混合气体的粘度进行了研究。基于双毛细管法设计实验装置,并考虑了修正项;采用氩气对实验装置进行标定后,测量了2种氦-氙混合气体(15、40 g/mol)在温度298.15~548.15 K、压力0.1~2.5 MPa下的动力粘度,并对测量结果进行了评价;为得到氦-氙混合气体高温下粘度,采用拟合粘度关系式的方法将粘度拟合值外推至温度为1273 K的粘度值。结果表明,本文实验结果与文献值符合较好;实验装置测量合成标准不确定度为3.88%,拟合值与文献值(实验值、计算值)的偏差较小。本研究为空间气冷堆设计和优化提供了基础热物性参数。   相似文献   

9.
基于华龙一号非能动安全壳热量导出系统(PCS)综合性能实验装置实验结果,对采用基于漂移流模型开发的华龙一号PCS程序(PCS?NCCP)进行验证,对比分析了设计工况及非设计工况下PCS?NCCP程序计算值与实验值之间的误差。结果显示,所开发的PCS?NCCP程序能模拟PCS的排热能力、稳态运行特性和动态响应特性,程序计算值能很好地跟踪实验的趋势和幅值变化,绝大部分计算误差落在±20%范围内,验证了PCS?NCCP程序的准确性。  相似文献   

10.
偏离泡核沸腾(DNB)对于压水堆安全具有重要意义。已有机理模型能否适用于矩形窄缝通道缺乏足够的实验验证。本文基于矩形窄缝通道实验数据,对微液层蒸干模型和汽泡壅塞模型两类DNB机理模型进行了计算评价。结果显示:汽泡壅塞模型适用范围较微液层蒸干模型宽;部分热工参数对模型计算性能有系统性影响。随空泡份额的增大,各模型的计算性能均变差,可能是通道几何差异所致。  相似文献   

11.
In this paper, the numerical simulation for the gas–liquid flow in a separator applied in the fission gas removal system for thorium molten salt reactor was investigated. The numerical model was established in the frame of Eulerian–Eulerian approach, in which the modeling of the forces acting on the bubbles was introduced. Based on the model, numerical simulations with three flow rates were carried out. Three key parameters (the pressure loss, the separation length, the liquid entrainment ratio) concerned with the separation performance were compared between the numerical results and the experimental data, the results indicate that the calculated results agree well with the experimental data. Hence, the numerical approach shows a promising tool for the performance prediction and the optimization of the gas–liquid separator.  相似文献   

12.
The heat removal capacity of a RCCS is one of the major parameters limiting the capacity of a HTGR based on a passive safety system. To improve the plant economy of a HTGR, the decay heat removal capacity needs to be improved. For this, a new analysis system of an algebraic method for the performance of various RCCS designs was set up and the heat transfer characteristics and performance of the designs were analyzed. Based on the analysis results, a new passive decay heat removal system with a substantially improved performance, LFDRS was developed. With the new system, one can have an expectation that the heat removal capacity of a HTGR could be doubled.  相似文献   

13.
余热排出系统管道发现的热疲劳裂纹问题关系到压水堆的安全。本文基于开源有限元软件Code_Aster,采用Lagoda-Macha-Sakane模型预测了余热排出系统管道材料304L不锈钢的疲劳寿命,并根据预测结果提出了改进的Lagoda-Macha-Sakane模型。采用改进的Lagoda-Macha-Sakane模型对余热排出系统管道的热疲劳寿命进行了预测,结果表明预测热疲劳寿命与试验热疲劳寿命吻合。  相似文献   

14.
A time-dependent reliability evaluation of a two-loop passive decay heat removal (DHR) system was performed as part of the iterative design process for a helium-cooled fast reactor. The system was modeled using RELAP5-3D. The uncertainties in input parameters were assessed and were propagated through the model using Latin hypercube sampling. An important finding was the discovery that the smaller pressure loss through the DHR heat exchanger than through the core would make the flow to bypass the core through one DHR loop, if two loops operated in parallel. This finding is a warning against modeling only one lumped DHR loop and assuming that n of them will remove n times the decay power. Sensitivity analyses revealed that there are values of some input parameters for which failures are very unlikely. The calculated conditional (i.e., given the LOCA) failure probability was deemed to be too high leading to the identification of several design changes to improve system reliability. This study is an example of the kinds of insights that can be obtained by including a reliability assessment in the design process. It is different from the usual use of PSA in design, which compares different system configurations, because it focuses on the thermal–hydraulic performance of a safety function.  相似文献   

15.
This study proposes an approach for capturing the effect of microstructural evolution on reactor fuel performance by coupling a mesoscale irradiated microstructure model with a finite element fuel performance code. To achieve this, the macroscale system is solved in a parallel, fully coupled, fully-implicit manner using the preconditioned Jacobian-free Newton Krylov (JFNK) method. Within the JFNK solution algorithm, microstructure-influenced material parameters are calculated by the mesoscale model and passed back to the macroscale calculation. Due to the stochastic nature of the mesoscale model, a dynamic fitting technique is implemented to smooth roughness in the calculated material parameters. The proposed methodology is demonstrated on a simple model of a reactor fuel pellet. In the model, INL’s BISON fuel performance code calculates the steady-state temperature profile in a fuel pellet and the microstructure-influenced thermal conductivity is determined with a phase field model of irradiated microstructures. This simple multiscale model demonstrates good nonlinear convergence and near ideal parallel scalability. By capturing the formation of large mesoscale voids in the pellet interior, the multiscale model predicted the irradiation-induced reduction in the thermal conductivity commonly observed in reactors.  相似文献   

16.
Removal of lead–bismuth droplets from steam flow is a crucial issue in the direct contact boiling lead–bismuth cooled fast reactor. Droplets are generated due to the boiling of water directly in the reactor chimney, where steam for the turbine is generated. The droplets could severely damage the turbine and therefore a steam dryer is used for their removal. This paper presents an optimization of the main steam dryer geometrical parameters and steam inlet velocity. The Lagrangian method is used, in which first the steam flow field is developed using the CFD code FrontFlow/Red and then the particle motion is simulated. It was found that the reduction of the plate spacing can improve the steam dryer performance without a significant increase of pressure drop, the wane pitch has a value after which the steam dryer performance is not significantly improved, the number of wanes of 1.5 was selected at this point, however, a more detailed model is necessary to arrive at the final conclusion. The optimum steam inlet velocity should be found using a detailed economical assessment. Velocities between 2 and 4 m/s seem to be reasonable to achieve good removal efficiency and keep the pressure drop at reasonable values.  相似文献   

17.
In Lagrangian particle dispersion modeling, the assumption that turbulence is isotropic everywhere yields erroneous predictions of particle deposition rates on walls, even in simple geometries. In this investigation, the stochastic particle tracking model in Fluent 6.2 is modified to include a better treatment of particle–turbulence interactions close to walls where anisotropic effects are significant. The fluid rms velocities in the boundary layer are computed using fits of DNS data obtained in channel flow. The new model is tested against correlations for particle removal rates in turbulent pipe flow and 90° bends. Comparison with experimental data is much better than with the default model. The model is also assessed against data of particle removal in the human mouth–throat geometry where the flow is decidedly three-dimensional. Here, the agreement with the data is reasonable, especially in view of the fact that the DNS fits used are those of channel flows, for lack of better alternatives. The CFD Best Practice Guidelines are followed to a large extent, in particular by using multiple grid resolutions and at least second order discretization schemes.  相似文献   

18.
针对我国大型非能动堆芯冷却系统整体试验(ACME)台架开展的全厂断电(SBO)整体效应试验,利用Relap5程序进行了建模和数值模拟,并进行了参数的比对分析,结果表明:Relap5数值模型可较好地再现ACME台架SBO整体试验的主要事故进程,其事故序列、关键热工水力现象均与试验结果一致;对于堆芯与非能动余热排出换热器(PRHR HX)和堆芯补水箱(CMT)间的自然循环现象,Relap5计算的自然循环流量偏高,自然循环瞬态过程较试验过程偏快;对于主回路系统(RCS)瞬态压力和稳压器水位峰值,Relap5的计算结果是保守的,存在安全裕量。   相似文献   

19.
The safety of gas cooled reactors (High Temperature Reactors (HTR), Very High Temperature Reactors (VHTR) or Gas Cooled Fast Reactors (GFR)) must be ensured by systems (active or passive) which maintain loads on component (fuel) and structures (vessel, containment) within acceptable limits under accidental conditions. To achieve this objective, thermal–hydraulics computer codes are necessary tools to design, enhance the performance and ensure a high safety level of the different reactors. Some key safety questions are related to the evaluation of decay heat removal and containment pressure and thermal loads. This requires accurate simulations of conduction, convection, thermal radiation transfers and energy storage. Coupling with neutronics is also an important modeling aspect for the determination of representative parameters such as neutronics coefficient (Doppler coefficient, Moderator coeffcient, …), critical position of control rods, reactivity insertion aspects, …. For GFR, the high power density of the core and its necessary reduced dimension cannot rely only on passive systems for decay heat removal. Therefore, forced convection using active safety systems (gas blowers, heat exchangers, …) are highly recommended. Nevertheless, in case of station black-out, the safety demonstration of the concept should be guaranteed by natural circulation heat removal. This could be performed by keeping a relatively high back-up pressure for pure helium convection and also by heavy gas injection. So, it is also necessary to model mixing of different gases, the on-set of natural convection and the pressure and thermal loads onto the proximate or guard containment. In this paper, we report on the developments of the CAST3M/ARCTURUS thermal–hydraulics (Lumped Parameter and CFD) code developed at CEA, including its coupling to the neutronics code CRONOS2 and the system code CATHARE. Elementary validation cases are detailed, as well as application of the code to benchmark problems such as the HTR-10 thermal–hydraulic exercise. Examples of containment thermal–hydraulics calculations for fast reactor design (GFR) are also detailed.  相似文献   

20.
浮动式核电站长期在海洋环境中运行,各系统都会受到海洋运动条件的影响。非能动余热排出系统(PRHRS)可在核电站发生全厂断电事故的情况下带出堆芯衰变余热,防止堆芯熔化,是重要的反应堆辅助系统。本文以一种采用海水作为最终热阱的浮动式核电站作为研究对象,分别设计了一回路和二回路PRHRS,开展了静止和摇摆条件下反应堆系统发生全厂断电事故的计算,对两种PRHRS在静止和摇摆条件下的运行特性进行了分析。研究表明,静止条件二回路PRHRS具有更强的带热能力,摇摆条件下一回路PRHRS的带热能力更加稳定。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号