首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 62 毫秒
1.
2.
段超  张婧  何彬  陈增照 《计算机应用研究》2021,38(9):2624-2627,2634
大量研究利用用户或项目的边信息来缓解视频推荐中的数据稀疏和冷启动问题,取得了一定的效果,但是没有关注辅助信息中的关键信息.针对此问题进行了研究,提出了一种融合双注意力机制的深度混合推荐模型.该模型通过融合自注意力机制的卷积神经网络挖掘项目端隐藏因子,同时融合自注意力机制的堆栈去噪自编码器提取用户端隐藏因子,深度挖掘项目端和用户端的重要信息.最后,通过结合概率矩阵分解实现视频评分预测.在两个公开数据集上的大量实验结果表明,提出的方法结果在已有ConvMF+、PHD、DUPIA等基线模型基础上有一定提升.  相似文献   

3.
张文龙  钱付兰  陈洁  赵姝  张燕平 《计算机应用》2005,40(12):3445-3450
基于项目的协同过滤从用户的历史交互项目中学习用户偏好,根据用户的偏好推荐相似的新项目。现有的协同过滤方法认为用户所交互的一组历史项目对用户的影响是相同的,并且将所有历史交互项目在对目标项目作预测时的贡献看作是相同的,导致这些推荐方法的准确性受限。针对上述问题,提出了一种基于双重最相关注意力网络的协同过滤推荐算法,该算法包含两层注意力网络。首先,使用项目级注意力网络为不同历史项目分配不同的权重来捕获用户历史交互项目中最相关的项目;然后,使用项目交互级注意力网络感知不同历史项目与目标项目之间的交互关联度;最后,通过两层注意力网络的使用来同时捕获用户在历史交互项目上和目标项目上的细粒度偏好,从而更好地进行下一步推荐工作。在MovieLens和Pinterest两个真实数据集上进行实验,实验结果表明,所提算法在推荐命中率上与基准模型基于深度学习的项目协同过滤(DeepICF)算法相比分别提升了2.3个百分点和1.5个百分点,验证了该算法在为用户进行个性化推荐上的有效性。  相似文献   

4.
张文龙  钱付兰  陈洁  赵姝  张燕平 《计算机应用》2020,40(12):3445-3450
基于项目的协同过滤从用户的历史交互项目中学习用户偏好,根据用户的偏好推荐相似的新项目。现有的协同过滤方法认为用户所交互的一组历史项目对用户的影响是相同的,并且将所有历史交互项目在对目标项目作预测时的贡献看作是相同的,导致这些推荐方法的准确性受限。针对上述问题,提出了一种基于双重最相关注意力网络的协同过滤推荐算法,该算法包含两层注意力网络。首先,使用项目级注意力网络为不同历史项目分配不同的权重来捕获用户历史交互项目中最相关的项目;然后,使用项目交互级注意力网络感知不同历史项目与目标项目之间的交互关联度;最后,通过两层注意力网络的使用来同时捕获用户在历史交互项目上和目标项目上的细粒度偏好,从而更好地进行下一步推荐工作。在MovieLens和Pinterest两个真实数据集上进行实验,实验结果表明,所提算法在推荐命中率上与基准模型基于深度学习的项目协同过滤(DeepICF)算法相比分别提升了2.3个百分点和1.5个百分点,验证了该算法在为用户进行个性化推荐上的有效性。  相似文献   

5.
罗洋  夏鸿斌  刘渊 《中文信息学报》2019,33(12):110-118
针对传统协同过滤算法难以学习深层次用户和项目的隐表示,以及对文本信息不能充分提取单词之间的前后语义关系的问题,该文提出一种融合辅助信息与注意力长短期记忆网络的协同过滤推荐模型。首先,附加堆叠降噪自编码器利用评分信息和用户辅助信息提取用户潜在向量;其次,基于注意力机制的长短期记忆网络利用项目辅助信息来提取项目的潜在向量;最后,将用户与项目的潜在向量用于概率矩阵分解中,从而预测用户偏好。在两个真实数据集MovieLens-100k和MovieLens-1M上进行实验,采用RMSE和Recall指标进行评估。实验结果表明,该模型与其他相关推荐算法相比在推荐性能上有所提升。  相似文献   

6.
现有的协同过滤推荐算法使用表示学习方法和匹配函数学习的方法来匹配用户喜欢的物品,但这不能充分表达用户对不同物品的真实偏好,且这些模型并不能有效捕获用户和物品交互时嵌入维度之间的相关性。为此,该文提出基于通道注意力的神经协同过滤模型NCFCA(Neural Collaborative Filtering based on Channel Attention)。首先,在网络中通过注意力机制对不同的物品分配不同的权重,来影响用户对物品的偏好程度;其次,模型利用卷积神经网络来提升用户和物品的关联性,并在卷积神经网络中加入通道注意力机制来挖掘丰富的语义信息;最后,利用广义矩阵分解方法来缓解因用户物品交互产生的数据稀疏问题并且将三个不同的模块(A-MLP、E-CNN、GMF)融合在一起。在MovieLens 1M和Lastfm数据集上的大量实验表明,NCFCA模型的准确率有不同程度的提高,表现出较为优越的推荐性能。  相似文献   

7.
互联网技术的发展使得信息过载问题日趋严重,为了解决传统推荐技术的数据稀疏和冷启动问题,社会推荐逐渐成为近年来的研究热点。图神经网络(GNNs)作为一种能够自然整合节点信息和拓扑结构的网络,为改进社会推荐提供了巨大的潜力。但基于图神经网络的社会推荐还存在许多挑战,例如,如何从用户项目交互图和社交网络图中学习准确的用户和项目的潜在因子表示;简单映射用户和项目的固有属性来获取嵌入,但用户项目交互的关键协作信号未被学习。为了学习更准确的潜在因子表示,捕获关键的协作信号,提升推荐系统的性能,提出了基于图注意力的神经协同过滤社会推荐模型(AGNN-SR)。该模型基于用户项目交互图和社交网络图,通过多头注意力机制多角度地学习用户和项目的潜在因子;此外,图神经网络利用高阶连通性递归地在图上传播嵌入信息,显式编码协作信号,探索用户和项目之间的深层复杂的交互关系。最后,在3个真实数据集上验证了AGNN-SR模型的有效性。  相似文献   

8.
在海量音乐中,如何根据用户的历史收听记录分析用户需求以实现歌曲推荐是音乐推荐领域具有挑战性课题之一。现有的音乐推荐方法仅简单将用户听过的所有音乐均作为音乐推荐的上下文,导致不同类型音乐学习到的上下文权重分配相同,其严重影响了音乐推荐精度。针对此问题,提出了一种基于注意力机制的音乐深度推荐方法,针对不同用户的历史收听音乐动态分配不同的注意力,即学习出不同的上下文权重,使推荐结果更符合用户的实际偏好。通过在公开音乐数据集Million Song Dateset上的测试,所提方法的推荐准确率有很大的提升。  相似文献   

9.
探讨注意力机制如何帮助推荐模型动态关注有助于执行当前推荐任务输入的特定部分.分析注意力机制网络框架及其输入数据的权重计算方法,分别从标准注意力机制、协同注意力机制、自注意力机制、层级注意力机制和多头注意力机制这五个角度出发,归纳分析其如何采用关键策略、算法或技术来计算当前输入数据的权重,并通过计算出的权重以使推荐模型可...  相似文献   

10.
为帮助用户快速、准确地获取所需的网络资源为目的,提出基于深度学习的网络资源优先协同过滤推荐方法.首先分析推荐过程的组成架构,将其划分为信息处理、用户建模、推荐算法等多个功能模块.然后通过共现关系分别描述网络资源与用户之间的关联性,从而建立资源-用户特征矢量模型,获取表示全面特征的目标函数.将能够反映丰富物理量的张量引入...  相似文献   

11.
目前,在推荐系统研究中,用户的隐式反馈,以及极度稀疏的数据,已成为影响协同过滤推荐效果的主要问题.针对这一现象,本文提出了深度学习协同过滤算法,先利用卷积神经网络,对用户-项目矩阵的隐层特征进行学习,再结合协同过滤,对用户-项目的交互信息进行建模,并将两种特征融合预测推荐列表.以众筹平台的数据为实验对象,比较模型中各参数对推荐效果的影响,并设计与基线方法的对比实验.实验结果表明:均匀采集负反馈,并在一定卷积层数的网络中,数据稀疏度越高,效果越好;对比基线方法,本文提出的算法在公开数据集(Yahoo!Movie)上取得了最好的推荐结果.本文提出的算法有助于提高众筹平台的融资成功率,同时也丰富了推荐系统的研究体系.  相似文献   

12.
面对数量庞大的用户和物品数量,推荐系统通常面临着数据稀疏的问题,为缓解此问题,提出了一个融合注意力机制和自编码器的协同过滤模型.该模型将评分信息送入一个基于自编码器的协同过滤子模型中以挖掘用户整体偏好,同时将评分信息送入一个融合了注意力机制的基于物品的协同过滤子模型中以挖掘物品与物品之间的局部依赖信息,随后将两个子模型...  相似文献   

13.
将显式特征与隐式反馈相结合是提高单类协同过滤(OCCF)推荐准确性的常用方法.但目前的研究一般是直接将原始显式特征或交叉特征集成到OCCF模型中,因其难以判断哪些显式特征是真正重要的,故很难获得显著的性能改进.基于此,提出了一种耦合用户公共特征的单类协同过滤推荐算法(UCC-OCCF).首先,建立基于邻居的共同偏好表示...  相似文献   

14.
基于矩阵分解的协同过滤算法近年来获得了巨大的成功,但是依然存在冷启动,忽视用户及物品特征等问题,从而导致推荐质量不佳,用户体验度下降。论文提出了一种基于深度学习的混合协同过滤推荐算法,尝试引入堆栈降噪自编码器学习物品的隐含特征,同时结合半监督S4VM和隐含因子模型,综合考虑物品的内容特征及时间因素,以预测未评分的数据,解决冷启动问题。在标准数据集Movielens上进行的测试表明:该算法能有效预测冷启动物品的评分,性能提升显著,较传统推荐性能提升约为12%。  相似文献   

15.
协同过滤算法已广泛应用在推荐系统中,在实现新异性推荐功能中效果显著,但仍存在数据稀疏、扩展性差、冷启动等问题,需要新的设计思路和技术方法进行优化.近几年,深度学习在图像处理、目标识别、自然语言处理等领域均取得突出成果,将深度神经网络模型与推荐算法结合,为构建新型推荐系统带来新的契机.本文提出一种新式混合神经网络模型,该模型由栈式降噪自编码器和深度神经网络构成,学习得到用户和项目的潜在特征向量以及用户-项目之间的交互行为模型,有效解决数据稀疏问题从而提高系统推荐质量.该推荐算法模型通过MovieLens电影评分数据集测试,实验结果与SVD、PMF等传统推荐算法和经典自编码器模型算法作对比,其推荐质量得到显著提升.  相似文献   

16.
R树是一个高度平衡树,也是目前应用最为广泛的空间索引结构.本文以用户行为的历史数据之间的相似度构造R树,提出一种基于R树的协同过滤推荐算法(R_CF);另外,从用户的隐式反馈着手,构建用户兴趣行为数据模型,并进行数据标准化处理.仿真实验表明:较之传统的协同过滤推荐算法(CF),本文提出的R_CF算法可以极大提升推荐top-n个相似度最高的用户时的查询速度.  相似文献   

17.
针对传统的基于模型的协同过滤推荐算法未能有效利用用户与项目的属性信息以及用户之间与项目之间的关系结构信息, 本文提出一种基于图注意力网络表示学习的协同过滤推荐算法. 该算法使用知识图谱表示节点的属性特征信息和节点间的关系结构信息, 并在用户和项目的同质网络上进行节点的图注意力网络表示学习, 得到用户和项目的网络嵌入特征表示, 最后构建融合网络嵌入信息的神经矩阵分解模型获得推荐结果. 本文在Movielens数据集上与相关算法进行对比实验, 实验证明该算法能优化模型的推荐性能, 提高推荐的召回率HR@K和归一化折损累计增益NDCG@K.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号