首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 13 毫秒
1.
Chlorine isotope fractionation during reductive dechlorination of trichloroethene (TCE) and tetrachloroethene (PCE) to cis-1,2-dichloroethene (cDCE) by anaerobic bacteria was investigated. The changes in the 37Cl/35Cl ratio observed during the one-step reaction (TCE to cDCE) can be explained by the regioselective elimination of chlorine accompanied by the Rayleigh fractionation. The fractionation factors (alpha) of the TCE dechlorination by three kinds of anaerobic cultures were approximately 0.994-0.995 at 30 degrees C. The enrichment of 37Cl in the organic chlorine during the two-step reaction (PCE to cDCE) can be explained by the random elimination of one chlorine atom in the PCE molecule followed by the regioselective elimination of one chlorine atom in the TCE molecule. The fractionation factors for the first step of the PCE dechlorination with three kinds of anaerobic cultures were estimated to be 0.987-0.991 at 30 degrees C using a mathematical model. Isotope fractionation during the first step would be the primary factor for the chlorine isotope fractionation during the PCE dechorination to cDCE. The developed models can be utilized to evaluate the fractionation factors of regioselective and multistep reactions.  相似文献   

2.
A pilot-scale demonstration of surfactant-enhanced aquifer remediation (SEAR) was conducted in July 2000 at the Bachman Road site located in Oscoda, MI. The Bachman aquifer is a shallow, relatively homogeneous, unconfined aquifer formation composed primarily of sandy glacial outwash with relatively low organic carbon content (0.02 wt %). A 6 wt % aqueous solution of Tween 80 (a nonionic, food-grade surfactant) was flushed through a localized dense nonaqueous phase liquid (DNAPL) source zone to recover approximately 19 L of tetrachloroethene (PCE). Post-treatment monitoring revealed PCE concentrations were reduced by up to 2 orders of magnitude within the source zone, and there was no evidence of concentration rebound after more than 450 d. Concentrations of PCE dechlorination products (trichloroethene, cis-1,2-dichloroethene) 450 d after SEAR operations ceased were more than 2 orders of magnitude greater than pretreatment values, suggesting stimulation of native dechlorination activity. Post-treatment monitoring detected increased concentrations of volatile fatty acids generated from the fermentation of residual-level Tween 80 surfactant. These field data suggest that Tween 80 not only induced and maintained anaerobiosis but also provided reducing equivalents to reductively dechlorinating populations present in the oligotrophic Bachman aquifer. Experience from this site supports application of staged treatment strategies that couple SEAR and microbial reductive dechlorination to enhance mass removal and reduce contaminant mass flux emanating from treated source zones.  相似文献   

3.
The microbial reductive dechlorination kinetics of pentachloroaniline (PCA) and less chlorinated anilines (CAs) were investigated with a mixed, fermentative/ methanogenic culture. Batch dechlorination assays were performed with all available CAs at an initial concentration of 3 microM, and an incubation temperature of 22 degrees C. Dechlorination of PCA, two tetrachloroanilines (2,3,4,5- and 2,3,5,6-TeCA), five trichloroanilines (2,3,4-, 2,3,5-, 2,4,5-, 2,4,6-, and 3,4,5-TrCA), and one dichloroaniline (3,5-DCA; low extent) was observed but none of the five remaining dichloroanilines and three monochloroanilines were dechlorinated by the enrichment culture during batch assays. The dechlorination rates (k') and half-saturation coefficients (Kc) were measured using nonlinear regression based on the integrated Michaelis-Menten equation under conditions of electron donor saturation and assuming constant biomass concentration over the relatively short batch incubation period. At an initial concentration of CAs of about 3 microM, the values of k' and Kc ranged from 0.25 to 1.19 microM/day and from 0.11 to 1.72 microM, respectively, corresponding to half-lives in the range of 1.5-8.5 days. Model simulations of the sequential dechlorination reactions based on a branched-chain Michaelis-Menten model and using independently measured k' and Kc values matched the experimental data very well.  相似文献   

4.
The reductive biotransformation of α-, β-, γ-, and δ-hexachlorocyclohexane isomers was investigated using five alternative electron donors (i.e., glucose plus methanol, glucose only, methanol only, acetate, and ethanol) in a batch assay of an HCH-dechlorinating anaerobic culture. In addition, a life cycle assessment was conducted using the IMPACT2002+ method to evaluate the environmental effects of HCH bioremediation with the aforementioned electron donors. Results showed that the electron donors methanol plus glucose, ethanol, glucose, and methanol can significantly enhance the biotransformation of each HCH isomer. However, the amended electron donors and the byproduct of the anoxic/anaerobic systems may negatively affect the environment (e.g., respiratory inorganic, land occupation, global warming, and non-renewable energy categories). These effects are attributed to the electron donor production processes. To avoid secondary pollutants, a linear relationship between the upper bound electron donor applications and HCH concentration was observed from an environmental perspective. Results indicated that the methanol scenario was the most suitable option for the current research.  相似文献   

5.
The population dynamics of a mixed microbial culture dechlorinating trichloroethene (TCE), cis-1,2-dichloroethene (cDCE), 1,2-dichloroethane (1,2-DCA), and vinyl chloride (VC) to ethene were studied. Quantitative PCR revealed that Dehalococcoides, Geobacter, Sporomusa, Spirochaetes, and Methanomicrobiales phylotypes grew in short-term experiments. Both Geobacter and Dehalococcoides populations grew during TCE dechlorination to cDCE, but only Dehalococcoides populations grew during further dechlorination to ethene. The cell yields for Dehalococcoides determined in this study were similar on an electron equivalent basis regardless of the chlorinated compound transformed: (0.9+/-0.3) x 10(8)16S rRNA gene copies/microelectron equivalent (microeeq) ethene produced during cDCE dechlorination, (1.5 +/-0.3) x 10(8) copies/microeeq ethene produced during VC dechlorination, and (1.6+/-0.8) x 10(8) copies/ u,eeq ethene produced during 1,2-DCA dihaloelimination. The yield for the Geobacter population on TCE was estimated to be (1+/-0.5) x 10(8) copies/microeeq cDCE produced. Calculations showed that the Geobacter population was likely responsible for approximately 80% of the TCE dechlorinated to cDCE in this experiment. Acetogenesis by a Sporomusa population was the main competition to dechlorination for reducing equivalents. Sporomusa did not transform any chlorinated substrates tested, but was capable of converting methanol to acetate and hydrogen for dechlorination. Understanding the functions of various populations in mixed communities may explain why Dehalococcoides spp. are active at some sites and not others, and may also assist in optimizing the growth of bioaugmentation cultures, both in the laboratory and in the field.  相似文献   

6.
7.
While most sites and all characterized PCE and TCE dechlorinating anaerobic bacteria produce cis-DCE as the major DCE isomer, significant amounts of trans-DCE are found in the environment. We have obtained microcosms from some sites and enrichment cultures that produce more trans-DCE than cis-DCE. These cultures reductively dechlorinated PCE and TCE to trans-DCE and cis-DCE simultaneously and in a ratio of 3(+/-0.5):1 that was stable through serial transfers with a variety of electron donors and occurred in both methanogenic and nonmethanogenic enrichments. Two sediment-free, nonmethanogenic enrichment cultures produced trans-DCE at rates of up to 2.5 micromol L(-1) day(-1). Dehalococcoides populations were detected in both trans-DCE producing cultures by their 16S rRNA gene sequences, and trans-DCE was produced in the presence of ampicillin. Because trans-DCE can be the major product from PCE and TCE microbial dechlorination, high fractions of trans-DCE at chloroethene-contaminated sites are not necessarily from source contamination.  相似文献   

8.
Kinetic studies with two different anaerobic mixed cultures (the PM and the EV cultures) were conducted to evaluate inhibition between chlorinated ethylenes. The more chlorinated ethylenes inhibited the reductive dechlorination of the less chlorinated ethylenes, while the less chlorinated ethylenes weakly inhibited the dechlorination of the more chlorinated ethylenes. Tetrachloroethylene (PCE) inhibited reductive trichloroethylene (TCE) dechlorination but not cis-dichloroethylene (c-DCE) dechlorination, while TCE strongly inhibited c-DCE and VC dechlorination. c-DCE also inhibited vinyl chloride (VC) transformation to ethylene (ETH). When a competitive inhibition model was applied, the inhibition constant (K(I)) for the more chlorinated ethylene was comparable to its respective Michaelis-Menten half-velocity coefficient, K(S). Model simulations using independently derived kinetic parameters matched the experimental results well. k(max) and K(S) values required for model simulations of anaerobic dechlorination reactions were obtained using a multiple equilibration method conducted in a single reactor. The method provided precise kinetic values for each step of the dechlorination process. The greatest difference in kinetic parameters was for the VC transformation step. VC was transformed more slowly by the PM culture (k(max) and K(S) values of 2.4+/-0.4 micromol/mg of protein/day and 602+/-7 microM, respectively) compared to the EV culture (8.1+/-0.9 micromol/mg of protein/day and 62.6+/-2.4 microM). Experimental results and model simulations both illustrate how low K(S) values corresponded to efficient reductive dechlorination for the more highly chlorinated ethylenes but caused strong inhibition of the transformation of the less chlorinated products. Thus, obtaining accurate K(S) values is important for modeling both transformation rates of parent compounds and their inhibition on daughter product transformation.  相似文献   

9.
The enhanced removal of carbon tetrachloride (CCl4), tetrachloroethene (C2Cl4), and trichloroethene (C2HCl3) by chloride green rust (GR(Cl)) in the presence of copper ions was investigated. X-ray powder diffraction (XRPD) and X-ray photoelectron spectroscopy (XPS) were used to characterize the crystallization and chemical speciation, respectively, of the secondary mineral phases produced in the GR(Cl)-Cu(II) system. The addition of Cu(II) to GR(Cl) suspensions resulted in enhanced dechlorination of the chlorinated hydrocarbons examined in this study. The degradation reactions followed pseudo-first-order kinetics and the pseudo-first-order rate constant (k(obs)) for CCl4 (20 microM) removal by GR(CI) at pH 7.2 was 0.0808 h(-1). Addition of 0.5 mM Cu(II) completely dechlorinated CCl4 within 35 min, and the k(obs) was 84 times greater than that in the absence of Cu(II). Chloroform (CHCl3), the major chlorinated product in CCl4 dechlorination, accumulated at a concentration up to 13 microM in the GR(Cl) system alone, but was completely dechlorinated within 9 h in the GR(Cl)-Cu(II) suspension. Also, rapid removal of C2Cl4 and C2HCl3 by GR(Cl) was observed when Cu(II) was added. The k(obs) values for the removal of chlorinated ethenes were 4.7-7 times higher than that obtained in the absence of Cu(II). In addition, the k(obs) for PCE removal increased linearly with respect to Cu(II) concentrations in the range from 0.1 to 1.0 mM. Addition of Cu(II) at a concentration higher than 1.0 mM decreased the k(obs) for the removal of both C2Cl4 and C2HCl3 due to the decrease in structural Fe(II) concentration in GR(Cl) and the changes in redox potentials and pH values. Moreover, the highest removal efficiency and rate of C2Cl4 was obtained at near-neutral pH when Cu(II) was added into the GR(Cl) suspension. XPS and XRPD results showed that the Fe(II) in the GR(Cl) suspension could reduce Cu(II) to both Cu(I) and metallic Cu. These findings are relevant to the better understanding of the role of abiotic removal of chlorinated hydrocarbons during remediation and/or natural attenuation in iron-reducing environments.  相似文献   

10.
Abiotic reductive dechlorination of chlorinated ethylenes by the sulfate form of green rust (GR(SO4)) was examined in batch reactors. Dechlorination kinetics were described by a modified Langmuir-Hinshelwood model. The rate constant for reductive dechlorination of chlorinated ethylenes at reactive GR(SO4) surfaces was in the range of 0.592 (+/-4.4%) to 1.59 (+/-6.3%) day(-1). The specific reductive capacity of GR(SO4) for target organics was in the range of 9.86 (+/-10.1%) to 18.0 (+/-4.3%) microM/g and sorption coefficient was in the range of 0.53 (+/-2.4%) to 1.22 (+/-4.3%) mM(-1). Surface area-normalized pseudo-first-order initial rate constants for chlorinated ethylenes by GR(SO4) were 3.4 to 8.2 times greater than those by pyrite. Chlorinated ethylenes were mainly transformed to acetylene, and no detectable amounts of chlorinated intermediates were observed. The rate constants for the reductive dechlorination of trichloroethylene (TCE) increased as pH increased (6.8 to 10.1) but were independent of solid concentration and initial TCE concentration. Magnetite and/or maghemite were produced by the oxidation of GR(SO4) by TCE. These findings are relevant to the understanding of the role of abiotic reductive dechlorination during natural attenuation in environments that contain GR(SO4).  相似文献   

11.
Abiotic reductive dechlorination of chlorinated ethylenes (tetrachloroethylene (PCE), trichloroethylene (TCE), cis-dichloroethylene (cis-DCE), and vinyl chloride (VC)) by pyrite and magnetite was characterized in a batch reactor system. Dechlorination kinetics was adequately described by a modified Langmuir-Hinshelwood model that includes the effect of a decreasing reductive capacity of soil mineral. The kinetic rate constant for the reductive dechlorination of target organics at reactive sites of soil minerals was in the range of 0.185 (+/- 0.023) to 1.71 (+/- 0.06) day(-1). The calculated specific reductive capacity of soil minerals for target organics was in the range of 0.33 (+/- 0.02) to 2.26 (+/- 0.06) microM/g and sorption coefficient was in the range of 0.181 (+/- 0.006) to 0.7 (+/- 0.022) mM(-1). Surface area-normalized pseudo-first-order initial rate constants for target organics by pyrite were found to be 23.5 to 40.3 times greater than those by magnetite. Target organics were mainly transformed to acetylene and small amount of chlorinated intermediates, which suggests that beta-elimination was the main dechlorination pathway. The dechlorination of VC followed a hydrogenolysis pathway to produce ethylene and ethane. The addition of Fe(II) increased the dechlorination rate of cis-DCE and VC in magnetite suspension by nearly a factor of 10. The results obtained in this research provide basic knowledge to better predict the fate of chlorinated ethylenes and to understand the potential of abiotic processes in natural attenuation.  相似文献   

12.
A high-density phylogenetic microarray (PhyloChip) was applied to track bacterial and archaeal populations through different phases of remediation at Ft. Lewis, WA, a trichloroethene (TCE)-contaminated groundwater site. Biostimulation with whey, and bioaugmentation with a Dehalococcoides-containing enrichment culture were strategies implemented to enhance dechlorination. As a measure of species richness, over 1300 operational taxonomic units (OTUs) were detected in DNA from groundwater samples extracted during different stages of treatment and in the bioaugmentation culture. In order to determine active members within the community, 16S rRNA from samples were analyzed by microarray and ~600 OTUs identified. A cDNA clone library of the expressed 16S rRNA corroborated the observed diversity and activity of some of the phyla. Principle component analysis of the treatment plot samples revealed that the microbial populations were constantly changing during the course of the study. Dynamic analysis of the archaeal population showed significant increases in methanogens at the later stages of treatment that correlated with increases in methane concentrations of over 2 orders of magnitude. Overall, the PhyloChip analyses in this study have provided insights into the microbial ecology and population dynamics at the TCE-contaminated field site useful for understanding the in situ reductive dechlorination processes.  相似文献   

13.
The reductive dehalogenation of chlorinated propenes was studied with the tetrachloroethene reductive dehalogenase purified from Sulfurospirillum multivorans to obtain indications for a radical mechanism of this reaction. When reduced methyl viologen (MV), which is a radical cation, was applied as electron donor for the reduction of different chloropropenes, a significant part of MV could not be rereduced with Ti(III) citrate, indicating that a part of the MV was consumed in a side reaction. Mass spectrometric analysis of assays with MV as electron donor revealed the formation of side products, the masses of which might account for the formation of adducts from a chloropropenyl radical and reduced methyl viologen. With Ti(III) citrate as sole electron donor, 2,3-dichloropropene was reduced and as a side product, 2,5-dichloro-1,5-hexadiene was formed demonstrating that the reductive dechlorination of 2,3-dichloropropene proceeds via a radical reaction mechanism. The results support different dehalogenation mechanisms forthe reductive dechlorination of chloropropenes and halogenated ethenes.  相似文献   

14.
Micellar partitioning of volatile chlorinated hydrocarbons in surfactant solutions and its effects on vapor-liquid equilibrium is fundamental to the overall design and implementation of surfactant-enhanced aquifer remediation. Surfactant micelles greatly enhance contaminant recovery from the subsurface; however, the reduced volatility of organic compounds compromises the aboveground treatment of surfactant-laden wastewaters using air-stripping process. Batch equilibrium tests were performed to acquire micellar partition coefficients (Km) and apparent Henry's law constants (H*) of three prominent groundwater contaminants (tetrachloroethylene, trichloroethylene, cis-dichlorethylene) in the presence of two anionic surfactants (sodium dodecyl sulfate, SDS; sodium dodecylbenzene sulfonate, SDBS) and two nonionic surfactants (Triton X-100 and Tween 80). The H* values were significantly reduced in the presence of all four surfactants over their critical micelle concentrations (cmc's). On a cmc basis, the anionic surfactant SDS had the greatest effect on H*, followed by SDBS, Triton X-100, and Tween 80. Anionic surfactants decreased H* to an order of magnitude lower than nonionic surfactants, although nonionic surfactants decreased the H* at concentrations significantly lower than the anionic surfactants due to their lower cmc's. Nonionic surfactants present higher Km and molar solubilization ratio than anionic surfactants. Tetrachloroethylene has the highest Km values among three chlorinated solvents, which agrees well with the hydrophobicity (Kow) of these chemicals. An empirical correlation between log Km and log Kow is developed on the basis of data from this study and the Km values reported for a number of chlorinated and nonchlorinated hydrocarbons. Equilibrium data were also tested against three sets of models that describe the partitioning of volatile compounds in vapor-water-micelle phases. Applications of these models in experimentally determining Km from batch vapor-water equilibrium data are discussed.  相似文献   

15.
A study to evaluate the dechlorination end points and the most promising electron donors to stimulate the reductive dechlorination process at the chloroethene-contaminated Bachman Road site in Oscoda, MI, was conducted. Aquifer materials were collected from inside the plume and used to establish microcosms under a variety of electron donor conditions using chlorinated ethenes as electron acceptors. All microcosms that received an electron donor showed dechlorination activity, but the end points depended on the sampling location, indicating a heterogeneous distribution of the dechlorinating populations in the aquifer. Interestingly, several microcosms that received acetate as the only electron donor completely dechlorinated PCE to ethene. All acetate-amended microcosms rapidly converted PCE to cis-DCE, whereas PCE dechlorination in H2-fed microcosms only occurred after a pronounced lag time and after acetate had accumulated by H2/CO2 acetogenic activity. The microcosm experiments were corroborated by defined co-culture experiments, which demonstrated that H2 sustained PCE to cis-DCE dechlorination by acetotrophic populations in the presence of H2/CO2 acetogens. In sediment-free nonmethanogenic enrichment cultures derived from ethene-producing microcosms, acetate alone supported complete reductive dechlorination of chloroethenes to ethene, although the addition of H2 resulted in higher cis-DCE and VC dechlorination rates. Measurements of H2 production and consumption suggested that syntrophic acetate-oxidizing population(s) were active in the enrichment cultures. These findings demonstrated that either acetate or H2 alone can be sufficient to promote complete  相似文献   

16.
Long-term column experiments were conducted to evaluate the effects of secondary carbonate minerals on permeability and reactivity of commercial granular iron treating trichloroethene (TCE). The results showed that carbonate precipitates caused a decrease in reactivity of the iron, and spatially and temporally varying reactivity loss resulted in migration of mineral precipitation fronts, as well as profiles of TCE, pH, alkalinity, calcium, and dissolved iron. In the columns receiving solutions of dissolved calcium carbonate, porosity gradually decreased in proportion to the source concentrations, as carbonate minerals accumulated. However, the rate of porosity loss slowed over time because of the declining reactivity of the iron. Thus, secondary minerals are not likely to accumulate to the extent that there is a substantial reduction in hydraulic conductivity. The reactivity of the iron was found to decrease as an exponential function of the carbonate mineral volume fraction. This changing reactivity of iron should be incorporated into predictive models for improved designs of iron permeable reactive barriers (PRBs).  相似文献   

17.
非离子表面活性剂对壳聚糖静电纺丝的影响   总被引:1,自引:0,他引:1       下载免费PDF全文
以三氟乙酸为溶剂,采用静电纺丝法制备了纯壳聚糖纳米纤维。采用扫描电镜观察纤维的形态,分析纺丝液质量分数及非离子表面活性剂TX-15对纤维形态的影响。研究发现:壳聚糖溶液体系的适纺质量分数范围为3%~6%;通过显著性检验得出纺丝液质量分数对纤维直径有显著性影响;通过添加非离子型表面活性剂TX-15可改善纺丝液的可纺性,质量分数为5%的纺丝液添加质量分数为2.5%的TX-15得到的壳聚糖纳米纤维形态比较好。  相似文献   

18.
The ability to transfer electrons, via an extracellular path, to solid surfaces is typically exploited by microorganisms which use insoluble electron acceptors, such as iron-or manganese-oxides or inert electrodes in microbial fuel cells. The reverse process, i.e., the use of solid surfaces or electrodes as electron donors in microbial respirations, although largely unexplored, could potentially have important environmental applications, particularly for the removal of oxidized pollutants from contaminated groundwater or waste streams. Here we show, for the first time, that an electrochemical cell with a solid-state electrode polarized at -500 mV (vs standard hydrogen electrode), in combination with a low-potential redox mediator (methyl viologen), can efficiently transfer electrochemical reducing equivalents to microorganisms which respire using chlorinated solvents. By this approach, the reductive transformation of trichloroethene, a toxic yet common groundwater contaminant, to harmless end-products such as ethene and ethane could be performed. Furthermore, using a methyl-viologen-modified electrode we could even demonstrate that dechlorinating bacteria were able to accept reducing equivalents directly from the modified electrode surface. The innovative concept, based on the stimulation of dechlorination reactions through the use of solid-state electrodes (we propose for this process the acronym BEARD: Bio-Electrochemically Assisted Reductive Dechlorination), holds promise for in situ bioremediation of chlorinated-solvent-contaminated groundwater, and has several potential advantages over traditional approaches based on the subsurface injection of organic compounds. The results of this study raise the possibility that immobilization of selected redox mediators may be a general strategy for stimulating and controlling a range of microbial reactions using insoluble electrodes as electron donors.  相似文献   

19.
Stable isotope analysis is recognized as a powerful tool for monitoring, assessing, and validating in-situ bioremediation processes. In this study, kinetic carbon isotope fractionation factors (epsilon) associated with the aerobic biodegradation of vinyl chloride (VC), cis-1,2-dichloroethylene (cDCE), and trichloroethylene (TCE) were examined. Of the three solvents, the largest fractionation effects were observed for biodegradation of VC. Both metabolic and cometabolic VC degradation were studied using Mycobacterium aurum L1 (grown on VC), Methylosinus trichosporium OB3b (grown on methane), Mycobacterium vaccae JOB5 (grown on propane), and two VC enrichment cultures seeded from contaminated soils of Alameda Point and Travis Air Force Base, CA. M. aurum L1 caused the greatest fractionation (epsilon = -5.7) while for the cometabolic cultures, epsilon values ranged from -3.2 to -4.8. VC fractionation patterns for the enrichment cultures were within the range of those observed for the metabolic and cometabolic cultures (epsilon = -4.5 to -5.5). The fractionation for cometabolic degradation of TCE by Me. trichosporium OB3b was low (epsilon = -1.1), while no quantifiable carbon isotopic fractionation was observed during the cometabolic degradation of cDCE. For all three of the tested chlorinated ethenes, isotopic fractionation measured during aerobic degradation was significantly smaller than that reported for anaerobic reductive dechlorination. This study suggests that analysis of compound-specific isotopic fractionation could assist in determining whether aerobic or anaerobic degradation of VC and cDCE predominates in field applications of in-situ bioremediation. In contrast, isotopic fractionation effects associated with metabolic and cometabolic reactions are not sufficiently dissimilar to distinguish these processes in the field.  相似文献   

20.
In situ chemical oxidation (ISCO) and in situ thermal remediation (ISTR) are applicable to treatment of groundwater contaminated with chlorinated ethenes. ISCO with persulfate (S2O8(2-)) requires activation, and this can be achieved with the heat from ISTR, so there may be advantages to combining these technologies. To explore this possibility, we determined the kinetics and products of chlorinated ethene oxidation with heat-activated persulfate and compared them to the temperature dependence of other degradation pathways. The kinetics of chlorinated ethene disappearance were pseudo-first-order for 1-2 half-lives, and the resulting rate constants-measured from 30 to 70 degrees C--fit the Arrhenius equation, yielding apparent activation energies of 101 +/- 4 kJ mol(-1) for tetrachloroethene (PCE), 108 +/- 3 kJ mol(-1) for trichloroethene (TCE), 144 +/- 5 kJ mol(-1) for cis-1,2-dichloroethene (cis-DCE), and 141 +/- 2 kJ mol(-1) for trans-1,2-dichloroethene (trans-DCE). Chlorinated byproducts were observed, but most of the parent material was completely dechlorinated. Arrhenius parameters for hydrolysis and oxidation by persulfate or permanganate were used to calculate rates of chlorinated ethene degradation by these processes over the range of temperatures relevant to ISTR and the range of oxidant concentrations and pH relevant to ISCO.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号