首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到12条相似文献,搜索用时 0 毫秒
1.
The geometry of glass knife edges for ultramicrotomy was studied with nanoscale resolution using scanning force microscopy (SFM) in the contact mode. The local shape of the cutting edge was estimated from single line profiles of the SFM topographic images by taking into account the exact radius of the ultrasharp silicon tip. The tip radius was estimated from secondary electron micrographs recorded at low voltage by field emission scanning electron microscopy (FESEM). The radius of the investigated cutting edges was found to be in range 5–20 nm. The results obtained illustrate that the combination of SFM and high resolution FESEM provides a unique means to determine precisely the radius of glass knives.  相似文献   

2.
A method, which is referred to as the edge reversal method, is proposed for precision measurement of the cutting edge radius of single point diamond tools. An indentation mark of the cutting edge which replicates the cutting edge geometry is firstly made on a soft metal substrate surface. The cutting edge of the diamond tool and its indentation mark, which is regarded as the reversal cutting edge, are then measured by utilizing an atomic force microscopy (AFM), respectively. The cutting edge radius can be accurately evaluated through removing the influence of the AFM probe tip radius, which is comparable to the cutting edge radius, based on the two measured data without characterization of the AFM probe tip radius. The results of measurement experiments and uncertainty analysis are presented to demonstrate the feasibility of the proposed method.  相似文献   

3.
Using transmission electron microscopy (TEM) and scanning force microscopy (SFM) together, it was possible to verify important structural features of a nanostructured bulk material such as the kp‐morphology in an ABC triblock copolymer. By applying suitable imaging techniques during the SFM measurements it was possible to determine the morphology without additional manipulation steps in between. In comparison, TEM investigations on this type of material usually require selective staining procedures prior to the measurement. Also electron beam damage is often encountered during TEM measurements especially if components such as poly(methacrylates) are present. In contrast, SFM measurements can be assumed not to significantly change the phase dimensions of the components.  相似文献   

4.
The shell of Micropilina arntzi (Mollusca: Monoplacophora), a primitive molluscan class, was examined by using field emission scanning electron microscopy (FESEM) at low voltage and atomic force microscopy (AFM). The use of these two techniques allowed the observation of fine details of Micropilina arntzi shell and contributed to bring new features concerning the study of molluscan shell microtexture. Imaging with low-voltage FESEM provided well-defined edge contours of shell structures, while analyzing the sample with AFM gave information about the step height of stacked internal structures as well as the dimension of the particles present in their surface at a nanometric level. The shell microstructure of Monoplacophora species presents different patterns and may be a taxonomic implication in the systematic studies of the group.  相似文献   

5.
This paper presents precision on-machine measurement of microwear and microcutting edge chipping of the diamond tool used in a force sensor integrated fast tool servo (FS-FTS) mounted on a three-axis diamond turning machine. A diamond edge artifact with a nanometric sharpness is mounted on the machine spindle with its axis of rotation along the Z-axis to serve as a reference edge artifact. The diamond tool is placed in the tool holder of the FS-FTS to generate cutting motion along the Z-axis. By moving the X-slide on which the FS-FTS is mounted, the reference edge can be scanned by the diamond tool. During the scanning, the Z-directional position of the tool is closed-loop controlled by the FS-FTS in such a way that the contact force between the tool tip and the reference edge is kept constant based on the force sensor output of the FS-FTS. The tool edge contour can be obtained from the scan trace of the tool tip, whose X- and Z-directional coordinates are provided by the output of the linear encoder of the X-slide and that of the displacement sensor in the FS-FTS, respectively. Since the reference edge artifact has a good hardness and a nanometric sharpness to ensure the lateral resolution of measurement, a microwear on the cutting edge of the diamond tool can be indentified from the measured tool edge contour. Experiments of on-machine measurement of tool edge contour and microtool wear are carried out to demonstrate the feasibility of the proposed system.  相似文献   

6.
We calculate a universal shift in work function of 59.4 meV per decade of dopant concentration change that applies to all doped semiconductors and from this use Monte Carlo simulations to simulate the resulting change in secondary electron yield for doped GaAs. We then compare experimental images of doped GaAs layers from scanning electron microscopy and conductive atomic force microscopy. Kelvin probe force microscopy allows to directly measure and map local work function changes, but values measured are often smaller, typically only around half, of what theory predicts for perfectly clean surfaces.  相似文献   

7.
A comparative study of atomic force microscopy (AFM) and scanning electron microscopy (SEM) imaging of the healthy human liver parenchyma was carried out to determine the similarities and the differences. In this study, we compared the fine hepatic structures as observed by SEM and AFM. Although AFM revealed such typical hepatic structures as bile canaliculi and hepatocytes, it also showed the location of the nucleus and chromatin granules in rough relief structure, which was not visible by SEM. By contrast, SEM visualized other structures, such as microvilli, the central vein, and collagenous fibers, none of which was visualized by AFM. For better orientation and confirmation of most of the structures imaged by SEM and AFM, Congo Red-stained specimens were also examined. Amyloid deposits in the Disse's spaces were shown especially clearly in these images. The differences between the SEM and AFM images reflected the characteristics of the detection systems and methods used for sample preparation. Our results reveal that more detailed information on hepatic morphology is obtained by exploiting the advantages of both SEM and AFM.  相似文献   

8.
Stratum corneum structure greatly differs from that of the living epidermis and specific sample cryo-preparation techniques have to be used. Practical aspects of these cryo-techniques applied to stratum corneum are discussed. Emphasis is placed on scanning electron microscopy of cryo-fixed samples. A new sample holder designed for cryo-scanning electron microscopy of freeze-fractured stratum corneum is described.  相似文献   

9.
Aqueous solutions of potassium cyanide and ammonium hydroxide are known to yield a heterogeneous cyanide polymer, containing paramagnetic sites and biologically significant substructures including polypeptides. Here, such solutions were used to prepare various samples of polymer for study by X-band and W-band electron spin resonance (ESR), scanning electron microscopy (SEM), and scanning force microscopy (SFM). Elemental composition of a typical sample of the polymer was C-35.2%, N-38.47%, 0-14.51%, and H-4.13%, exposing the polymer to 6M HCl hydrolyzed portions of the polymer and released glycine and traces of other amino acids. The X-band ESR spectra consist of a single slightly asymmetric line centered at g = 2.003; spin concentration measurements made at X-band using a nitroxide radical standard yield approximate radical concentrations of 10(18) spins/gm. W-band ESR indicates the presence of a single rhombic paramagnetic site with g(x) = 2.0025, g(y) = 2.0030, and g(z) = 2.0048 and the possibility of small 14N hyperfine splittings. The ESR spin echo studies yield a longitudinal relaxation time, Tl of 75 microS and a short-phase memory relaxation time, Tm, of about 300 nS. Scanning electron microscopy studies of the polymer show that it is made of ellipsoidal particles about one micron in size. The particles tend to clump together when suspended in aqueous solution. The particles disperse and dissolve in dimethyl sulfoxide (DMSO); when these solutions dry on microscope slides, optical microscopy shows a branched island morphology for the polymer. This morphology is reminiscent of snowflakes and is identified as dendritic. Phase contrast SFM of the dendritic arms show a striking segregation and ordering of various components of the polymer. Paramagnetic sites are conserved in the series of steps leading to dendritic structures.  相似文献   

10.
The potential of phase-sensitive acoustic microscopy (PSAM) for characterizing polymer thin films is reviewed in comparison to atomic force microscopy (AFM). This comparison is based on results from three-dimensional vector contrast imaging and multimodal imaging using PSAM and AFM, respectively. The similarities and differences between the information that can be derived from the AFM topography and phase images, and the PSAM phase and amplitude micrographs are examined. In particular, the significance of the PSAM phase information for qualitative and quantitative characterization of the polymer films is examined for systems that generate surface waves, and those that do not. The relative merits, limitations and outlook of both techniques, individually, and as a complementary pair, are discussed.  相似文献   

11.
Sugiyama S  Yoshino T  Hirose T  Ohtani T 《Scanning》2012,34(3):186-190
Fluorescence banding has been used to classify chromosomes, except those of barley. Four of the seven barley chromosomes are indistinguishable by length or arm ratio. C-banding has been used for classification; however, it requires a long aging period. Here, we describe a new fluorescence banding method for barley. The chromosomes are treated with warm acetate followed by staining with a fluorescent dye, YOYO-1. Using this method, all seven barley chromosomes can be clearly distinguished. Atomic force microscopy and scanning near-field microscopy analyses revealed that the surfaces of the banded chromosomes were flat, indicating that the fluorescence intensity reflected the internal DNA density or condensation of chromatin.  相似文献   

12.
We demonstrated the repetitive imaging of the same area of a nafion film before and after annealing by using atomic force microscopy (AFM). In order to find the exact same area of the same sample after changing the cantilever and reattaching the sample, a micropatterned substrate was developed. A micropattern with a 250–500 μm pitch was prepared on the backside of a transparent glass substrate. This pattern includes various signs such as colored letters and numbers at the center of each lattice of the pattern. The nanostructures fabricated by AFM nanolithography on a nafion film using this new method were successfully characterized before and after annealing (over 100 °C). The AFM images clearly showed that the nanostructures on a nafion film were dramatically changed by annealing. The data indicated an evidence to understand why the nafion fuel cell does not work well at high temperatures. Our method is probably effective for the study of nanoscopic dynamics in various surface structures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号