首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The prevalence of hypercalcemia in patients with untreated tuberculosis (TB) varies widely between countries. Since the vitamin D status and calcium intake are important determinants of hypercalcemia in TB, these two factors were compared among four populations (U.K., Hong Kong, Malaysia, Thailand) with a low prevalence (<3%) and two populations (Sweden, Australia) with a high prevalence (>25%). In the three Asian countries, the circulating vitamin D levels are abundant, but the calcium intakes are low. Subjects from the U.K. have the lowest circulating vitamin D level of all, although their calcium intake is high. In Sweden and Australia, both the circulating vitamin D levels and calcium intakes are high. Since serum 1,25(OH)2D concentration will only be raised if its substance for extrarenal conversion, 25(OH)D, is plentiful and the effect of a given serum 1,25 (OH)2D concentration on serum calcium is determined by the calcium intake, it is postulated that the regional variation in the prevalence of hypercalcemia in TB may be due to differences in the circulating vitamin D levels and calcium intakes in these populations.  相似文献   

2.
The morphology of the neuroendocrine caudodorsal cells (CDCs), which are involved in the regulation of female reproduction in the pond snail Lymnaea stagnalis, was studied in young (200 to 234 days of age) and old (400 to 500 days) animals. Lucifer Yellow fills of ventral CDCs showed that in young animals ventral CDCs branch ipsilaterally as well as contralaterally in the cerebral commissure. In old animals these branches were reduced at different degrees and in some cases even lacking completely, leaving only an axon crossing the commissure. Immunocytochemical stainings with antibodies against CDC peptides (CDCH-I and alpha CDCP) corroborated the finding that ventral CDCs degenerate. Among the other types of CDCs (dorsal, lateral), degeneration was found as well. The immunocytochemical findings showed that in old animals the axon terminals of the CDCs were strongly stained, indicating that they are packed with secretory vesicles containing peptides. It was also found that these darkly stained, peptide-containing axon terminals protruded into the perineurium. These findings suggest that accumulation of peptides in the terminals of the CDCs of old animals may be due to the impaired release. The relationship between atrophy and degeneration of CDCs and cessation of egg-laying activity in Lymnaea is discussed.  相似文献   

3.
By using an antiserum raised against a crustacean beta-pigment-dispersing hormone (PDH), the distribution and chemical neuroanatomy of PDH-like immunoreactive neurons was investigated in the central nervous system of the gastropod snails, Helix pomatia and Lymnaea stagnalis. The number of immunoreactive cells in the Helix central nervous system was found to be large (700-900), whereas in Lymnaea, only a limited number (50-60) of neurons showed immunoreactivity. The immunostained neurons in Helix were characterized by rich arborizations in all central ganglia and revealed massive innervation of all peripheral nerves and the neural (connective tissue) sheath around the ganglia and peripheral nerve trunks. A small number of Helix nerve cell bodies in the viscero-parietal ganglion complex were also found to be innervated by PDH-like immunoreactive processes. Hence, a complex central and peripheral regulatory role, including neurohormonal actions, is suggested for a PDH-like substance in Helix, whereas the sites of action may be more limited in Lymnaea.  相似文献   

4.
In vitro appetitive classical conditioning of the feeding response in the pond snail Lymnaea stagnalis. J. Neurophysiol. 78: 2351-2362, 1997. An in vitro preparation was developed that allowed electrophysiological analysis of appetitive conditioning of feeding in the model molluscan system, Lymnaea. The network generating the feeding motor program (fictive feeding) is well characterized at the cellular level and consists of identified central pattern generator (CPG) interneurons, motor neurons, and modulatory interneurons. Activation of a modulatory interneuron, the slow oscillator (SO), evokes the three-phase fictive feeding rhythm in the same semi-intact preparations where tactile stimuli can be applied to the lips. By pairing touch as a conditioned stimulus (CS) with stimulation of the SO as an unconditioned stimulus (US), we established an effective in vitro paradigm for appetitive conditioning. Before training, touch to the lips evoked only brief and weak activity in the feeding interneurons and motor neurons. After 6-10 conditioning trials, there was a significant enhancement in the fictive feeding response to CS alone. This was not seen in controls (CS only, US only, random CS and US) and in preparations where there was no initial brief response to touch before conditioning. Direct recordings from the protraction phase N1M interneurons during in vitro conditioning indicated that the enhancement of the fictive feeding is due to an increased activation of these CPG cells by mechanosensory inputs from the lips. We also found that the conditioned response was not due to a facilitated activation of modulatory neurons in the feeding network, such as the SO or the cerebral giant cells (CGCs), because the activity of these cells remained unchanged after conditioning.  相似文献   

5.
In the snail, the pH 6.7-6.8 decreased the neuron membrane potential in 10% of cases and increased it in 30%. The hyperpolarisation was equal to 9(5 mV, the effect being abolished by addition of 5-10 M strophantidine. The findings suggest that low pH activates sodium conduction, the hyperpolarisation being caused by activation of the K+/Na(+)-pump.  相似文献   

6.
With an antiserum to the molluscan cardioactive tetrapeptide FMRF-amide immunoreactive perikarya and nerve fibers were identified in the central and peripheral nervous system of the pond snail Lymnaea stagnalis. Their localization is described. The same antiserum yielded reactive product in particular cells of the epithelium of the alimentary tract. The use of two different fixatives, glutaraldehyde, and a mixture of glutaraldehyde, picric acid, and acetic acid (GPA) showed that certain nerve cells can be identified only in material fixed with either the one or the other of these two fixatives, a result which indicates that in Lymnaea more than one FMRF-amide-like substances may occur. "Positive" axon endings were found in the periphery of various nerves, i.e., in places where neurohormones are released into the blood. Other fibers were found to end, probably synaptically, on other neurons, on epithelial cells in the stomach, and between muscle cells in various parts of the body, e.g., in the heart. In these cases the FMRF-amide-like substance may function as a neurotransmitter or a neuromodulator.  相似文献   

7.
1. We used intracellular recording techniques to examine the role of a novel type of protraction phase interneuron, the lateral N1 (N1L) in the feeding system of the snail Lymnaea stagnalis. 2. The N1Ls are a bilaterally symmetrical pair of electrotonically coupled interneurons located in the buccal ganglia. Each N1L sends a single axon to the contralateral buccal ganglia. Their neurite processes are confined to the buccal neuropile. 3. In the isolated CNS, depolarization of an N1L is capable of driving a full (N1-->N2-->N3), fast (1 cycle every 5 s) fictive feeding rhythm. This was unlike the previously described N1 medial (N1M) central pattern generator (CPG) interneurons that were only capable of driving a slow, irregular rhythm. Attempts to control the frequency of the fictive feeding rhythm by injecting varying amounts of steady current into the N1Ls were unsuccessful. This contrasts with a modulatory neuron, the slow oscillator (SO), that has very similar firing patterns to the N1Ls, but where the frequency of the rhythm depends on the level of injected current. 4. The N1Ls' ability to drive a fictive feeding rhythm in the isolated preparation was due to their strong, monosynaptic excitatory chemical connection with the N1M CPG interneurons. Bursts of spikes in the N1Ls generated summating excitatory postsynaptic potentials (EPSPs) in the N1Ms to drive them to firing. The SO excited the N1M cells in a similar way, but the EPSPs are strongly facilitatory, unlike the N1L-->N1M connection. 5. Fast (1 cycle every 5 s) fictive feeding rhythms driven by the N1L occurred in the absence of spike activity in the SO modulatory neuron. In contrast, the N1L was usually active in SO-driven rhythms. 6. The ability of the SO to drive the N1L was due to strong electrotonic coupling, SO-->N1L. The weaker coupling in the opposite direction, N1L-->SO, did not allow the N1L to drive the SO. 7. Experiments on semintact lip-brain preparations allowed fictive feeding to be evoked by application of 0.1 M sucrose to the lips (mimicking the normal sensory input) rather than by injection of depolarizing current. Rhythmic bursting, characteristic of fictive feeding, began in both the SO and N1L at exactly the same time, indicating that these two cell types are activated in "parallel" to drive the feeding rhythm. 8. The N1L is also part of the CPG network. It Excited the N2s and inhibited the N3 phasic (N3p) and N3 tonic (N3t) CPG interneurons like the N1Ms.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

8.
1. Dopaminergic transmission was investigated in the central nervous system (CNS) of the freshwater snail, Lymnaea stagnalis. 2. The giant pedal neuron, designated as right pedal dorsal one (RPeD1), makes chemical, monosynaptic connections with a number of identified follower cells in the CNS. Previous work has shown that RPeD1 is an interneuron and a important component of the Lymnaea respiratory central pattern generator. In this study, the hypothesis that RPeD1 uses dopamine as its neurotransmitter was tested by chromatographic, pharmacological, and electrophysiological methods. Characterization of RPeD1's transmitter pharmacology is essential to clearly understand its role in Lymnaea. 3. Earlier studies demonstrated that the soma of RPeD1 contains dopamine. This was quantitated in the present study by high-performance liquid chromatography (with electrochemical detection) of isolated RPeD1 somata and growth cones, which yielded 0.8 +/- 0.3 and 0.10 +/- 0.08 pmol of dopamine per soma and growth cone, respectively. 4. Bath or pressure application of dopamine to follower cells of RPeD1, in situ, mimicked the effects of RPeD1 stimulation. Dose-response curves were constructed for the excitatory effect of dopamine on follower cells, visceral dorsal two and three (VD2/3) (ED50 = 39 microM; Hill coefficient = 1.03), and the inhibitory effect of dopamine on follower cell, visceral dorsal four (ED50 = 33 microM; Hill coefficient = 0.92). 5. The following dopamine agonists (100 microM) were tested by bath application: 2-amino-6,7-dihydroxy-1,2,3,4-tetrahydronaphthalene (ADTN), apopmorphine, 2-bromo-alpha-ergocryptine, deoxyepinephrine (DE), mesulergine, (-) quinpirole, SKF 38393, and tyramine. Only the general dopamine agonists, ADTN and DE, mimicked RPeD1's effects on its follower cells. 6. When VD2/3 was isolated and plated in vitro, it maintained a depolarizing response to dopamine. This response was reduced by intracellular injection of the G-protein blocker, GDP-beta-S (2 mM in electrode). Similarly, incubation of VD2/3, in vitro for approximately 18 h, with pertussis toxin (PTX; 5 micrograms/ml), the G-protein inactivating exotoxin, also reduced the dopamine response. Injecting GDP or incubating in heat-inactivated PTX did not effect the response. 7. Several dopamine antagonists were used in an attempt to block RPeD1's synapses: chlorpromazine, ergonovine, fluphenazine, haloperidol, 6-hydroxydopamine, SCH 23390, (+/-) sulpiride, and tubocurarine. Only the D-2 dopamine receptor antagonist, (+/-) sulpiride, reversibly blocked synaptic transmission from RPeD1 to its follower cells. Both the (+) and the (-) enantiomer of sulpiride also antagonized synaptic transmission. A dose-inhibition curve for (+/-) sulpiride was constructed (IC50 = 47 microM).(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

9.
In this paper, we have mapped the cellular localization of various transmitters onto the central neurons which are involved in male copulation behavior in Lymnaea stagnalis, by combining retrograde tracing with immunocytochemistry and in situ hybridization. Evidence is provided that neurons which were backfilled from the penis nerve, the sole nerve to innervate the male copulatory organ, synthesize a multitude of neuropeptides (APGWamide, Lymnaea neuropeptide tyrosin [LNPY], conopressin, pedal peptide, SEEPLY, DEILSR, myomodulin, and Lymnaea inhibitory peptide [LIP]) as well as the classical neurotransmitter, serotonin. In the anterior lobe, the backfilled neurons mainly contain the tetrapeptide APGWamide and conopressin, and not LNPY or pedal peptide. The results suggest a central role in the regulation of copulation activity for the anterior lobe neurons that produce APGWamide and conopressin. Immunostainings of backfilled nervous systems revealed immunopositive axons originating from these neurons to form varicosities on the cell somata of neurons in the other clusters contributing to the innervation of the male sexual system. Neurons from the right parietal ganglion projecting into the penis nerve were electrophysiologically and morphologically identified by simultaneously recording from the cell body intracellularly and the penis nerve extracellularly and subsequently filling them with an anterograde tracer and subjecting them to immunocytochemistry. This method has provided links between morphology, physiology, and the transmitter contents of these neurons.  相似文献   

10.
The male copulation behaviour of the hermaphrodite pond snail Lymnaea stagnalis is under the control of five groups of central neurons that produce a variety of neuropeptides and a classical transmitter, 5-hydroxy tryptamine (5HT). In this article, we describe how the male sexual organs of this snail are innervated by axons from these central neurons. We carried out immunocytochemistry with antisera against the tetra peptide Ala-Pro-Gly-TRP-NH2 (APGWamide), the Lymnaea form of neuropeptide tyrosine (LNPY), conopressin, pedal peptide, the FRMFamide copeptide SEEPLY, the GDPFLRFamide co-peptide DEILSR, myomodulin, Lymnaea inhibitory peptide, and 5HT on tissue sections of the following male sexual organs that receive input from the penis nerve: the prostate gland, vas deferens, preputium, and penis. The results demonstrate that the axons of the separate muscle systems contain particular combinations of transmitters. In addition, two networks of peripheral neurons were revealed. In the tip of the everted preputium lies what appears to be a network of conopressin-containing sensory neurons, which is possibly involved in probing; probing is the part of copulation behaviour in which the male searches for the female genital pore. The other network of peripheral neurons surrounds the most proximal part of the vas deferens and is most likely involved in the pacemaker control of vas deferens motility. On the basis of the data obtained, we hypothesize how the preputium and penis are everted during copulation and which transmitters and central neurons might be involved.  相似文献   

11.
1. In the present study we have investigated the ontogeny of FMRFamide expression in the snail, Lymnaea stagnalis, from its first appearance to its distribution in young adults. 2. The first FMRFamide-like immunoreactive (FaLI) cells within CNS appear by E45 embryonic stage (premetamorphic veliger). The number of FaLI neurons increases throughout both pre- and post-hatching development. 3. Both transient and sustained expression of FMRFamide-like immunoreactivity by specific sets of neurons occurs. Two cells which transiently express immunoreactivity appear outside the future CNS by the stage E45. Other population of transient FaLI neurons includes bilaterally symmetric groups of cells in the cerebral and pedal ganglia during posthatching stages P1 (hatchlings) to P5 (juveniles). All other immunostained cells which appear during development maintain their transmitter phenotype into adulthood. 4. The possible role of FMRFamide-related peptides in the processes of morpho- and neurogenesis is discussed.  相似文献   

12.
13.
14.
1. The sensory neurons in the leech central nervous system differ in their accommodation to linearly rising currents. Advantage was taken of these differences to study the ionic mechanism of accommodation in single pairs of N (noxious), P (pressure), and T (touch) cells. 2. Nonlinearities in membrane-potential changes and current-voltage relationships with square-wave and ramp currents are more pronounced in P and T cells than in N cells. The accommodation coefficients increase in conditions that reflect this delayed rectification. When rectification is absent, the accommodation coefficients depart from unity only slightly or not at all. 3. Accommodation coefficients remain unchanged when half of the chloride in the bathing medium is replaced by sulfate. Accommodation coefficients become greater when the extracellular potassium concentration is reduced from 4 to 0 mM, and decrease when the concentration is raised to 8 mM. The membrane potential changes by only a few millivolts. 4. As extracellular potassium concentration is increased, the action potential is lengthened and the maximal rate of fall of the action potential is reduced. With concentrations greater than 4 mM these relationships are linear, but depart from linearity at lower concentrations. The amplitude of the undershoot decreases linearly as the extracellular potassium concentration increases from 4 to 16 mM, and increases non-linearly at concentrations below 4 mM. 5. The rapid accommodation of leech neurons is based primarily on an increased potassium conductance. The possibility is considered that concentration changes like those produced experimentally may occur naturally, affecting integrative processes in the central nervous system.  相似文献   

15.
16.
The goal of this study was to determine which neural elements are excited by microstimulation of the central nervous system. A cable model of a neuron including an axon, initial segment, axon hillock, soma, and simplified dendritic tree was used to study excitation with an extracellular point source electrode. The model reproduced a wide range of experimentally documented extracellular excitation patterns. The site of action potential initiation (API) was a function of the electrode position, stimulus duration, and stimulus polarity. The axon or initial segment was always the site of API at threshold. When the electrode was positioned near the cell body, the site of excitation was dependent on the stimulus amplitude. With the electrode in close proximity to the neuron, short-duration cathodic pulses produced lower thresholds with the electrode positioned over the axon than over the cell body, and long-duration stimuli produced opposite relative thresholds. This result was robust to alterations in either the maximum conductances or the intracellular resistivities of the model. The site of maximum depolarization was not always an accurate predictor of the site of API, and the temporal evolution of the changes in membrane potential played a strong role in determining the site of excitation.  相似文献   

17.
The freshwater snail Lymnaea stagnalis was exposed to cadmium concentrations of 0, 25, 50, 100, 200, and 400 microgram liter-1. The influence of this highly toxic metal on various stages of reproduction (number of egg masses, number of eggs, embryo development, and hatching) was studied. Egg production ceased at 400 microgram Cd2+ liter-1 and hatching was reduced to 0.4% with 200 microgram liter-1 at 20 degreesC. The study revealed that embryo development was the most sensitive stage, the main anomalies observed depending on the Cd2+ concentration. At the highest concentration studied (400 microgram liter-1) the eggs were blocked in the first cleavage stage. At 100 and 200 microgram Cd2+ liter-1, development of the eggs was halted at various stages of embryogenesis (cleavage, gastrula, veliger, and prehatching) depending on their position in the egg masses. At concentrations of 25 to 100 microgram Cd2+ liter-1, development was slowed down and hatching occurred 5 to 15 days later than in the controls (controls hatched 12 to 13 days after laying). The results obtained demonstrate the effects of Cd2+ on reproduction and development in L. stagnalis and provide information on the targets affected (neuroendocrine control of laying or cell multiplication and organogenesis of the embryos). It is thus possible to predict the probability of survival of the species in an environment polluted with cadmium and to compare it with the effects of other pollutants in the same or other species.  相似文献   

18.
The molluscan vasopressin/oxytocin analogue Lys-conopressin excites neurons in the anterior lobe of the right cerebral ganglion of the snail Lymnaea stagnalis. Persistent inward currents that underlie the excitatory response were studied with the use of voltage-ramp protocols in the identified neuron RCB1 and other anterior lobe neurons. Under whole cell voltage-clamp conditions, two types of conopressin-activated current could be distinguished on the basis of their voltage dependence: 1) a pacemaker-like current that was activated at potentials above -40 mV (high-voltage-activated current, I(HVA)) and 2) an inward current that was activated at all potentials between -90 and +10 mV (low-voltage-activated current, I(LVA)). Ion substitution experiments indicate that sodium is the main charge carrier for I(HVA) and I(LVA). Both currents are differentially affected by cadmium. I(HVA) and I(LVA) differ in dose dependence, with median effective concentration values of 7.7 x 10(-8) M and 2.2 x 10(-7) M, respectively. Vasopressin and oxytocin act as weak agonists for the conopressin responses. The kinetics of desensitization and washout of I(HVA) and I(LVA) are different. The HVA response shows little desensitization, whereas the LVA response desensitizes within minutes (time constant 80 +/- 28 s, mean +/- SD). The time constant of washout on removal of conopressin is 159 +/- 63 s for I(HVA) and 36 +/- 13 s for I(LVA). These results suggest that two distinct conopressin receptors are involved in the activation of both currents. The conopressin-activated currents induce or enhance a region of negative slope resistance in the steady-state current-voltage relation. They differ from a third persistent inward current that is carried by calcium and completely blocked by cadmium. The presumed functional roles of these currents, possibly including autoregulation, are discussed.  相似文献   

19.
The three typical stages in the clinical course of multiple sclerosis (relapse, persistent disability and progression) can be explained on the basis of inflammation, demyelination and failure of repair leading to axon degeneration and astrocytosis. Strategies are being evaluated for limiting the inflammatory process using immunological treatments and these may have unexpected dividends in promoting endogenous remyelination. Increasing knowledge on glial lineages and axon-glial interactions needed for stable myelination also offer the prospect for enhancing remyelination through growth factor therapy and cell implantation.  相似文献   

20.
Neoplasia of the central nervous system (CNS) can be divided into two main categories: nonpituitary CNS neoplasia and pituitary adenomas. Nonpituitary CNS neoplasias are generally compressive in nature, although some are also invasive. The majority of reported CNS tumors are secondary with only a few originating from nervous tissue. Pituitary adenomas predominantly occur in the pars intermedia of the older horse. Clinical signs, diagnostic testing, and possible treatments are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号