首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
白鲜萍  班士良 《半导体学报》2005,26(12):2422-2427
对AlxGa1-xAs/GaAs半导体单异质结系统,引入有限高势垒与考虑导带弯曲的真实势,同时计入电子对异质结势垒的隧穿,利用变分法和记忆函数方法讨论在界面光学声子和体纵光学声子的散射下,异质结界面附近电子迁移率随温度的变化关系及其压力效应.结果显示:电子迁移率随温度、压力的增加而减小;且两种声子的散射作用均随压力增强,界面光学声子的变化幅度更大.因此,在讨论压力的情形下,界面光学声子的作用不容忽略.  相似文献   

2.
己制备成双异质结AlxGa1-xAs激光器,异质结处组合物的不连续性Δx为0.45~0.68,激活区宽度约为0.1微米。这类器件具有迄今所报道的最低的室温阈值电流密度(475安/厘米2),它的微分量子效率为40%或更高。  相似文献   

3.
采用深紫外光致发光技术测量AlxGa1-xN半导体异质外延膜的禁带宽度,结合Material Studio软件中的CASTEP模块模拟计算AlxGa1-xN异质外延膜材料的弯曲因子,测定了AlxGa1-xN外延膜样品中的Al元素物质的量分数。结果表明,发射波长为224.3nm的HeAg激光器能够激发AlxGa1-xN半导体材料产生发光现象。CASTEP软件模拟计算得到AlxGa1-xN的弯曲因子为1.01462±0.06772eV,认为其弯曲因子在1.0eV附近,由此可以理论计算得到具有Al组分梯度的一系列AlxGa1-xN外延膜样品中的Al元素物质的量分数。  相似文献   

4.
5.
利用现有外延材料生长技术和器件工艺技术,生长了背照式AlxGa1-xN pin外延材料,并用生长的材料制作了日盲紫外探测器,测试结果表明器件在0V偏压下抑制比达到了6 400。在此基础上,较详细地分析了偏置电压、p-AlxGa1-xN载流子浓度和Al组分、极化效应对背照式AlxGa1-xN pin日盲紫外探测器抑制比的影响及非日盲光生载流子的限制机制。分析表明,提高p-AlxGa1-xN载流子浓度和GaN/AlxGa1-xN异质结极化强度是现有技术条件下提高器件抑制比的有效途径。  相似文献   

6.
Al含量对GaN/AlxGa1-xN量子点中激子态的影响   总被引:13,自引:1,他引:12  
利用有效质量方法和变分原理,考虑内建电场和量子点的三维约束效应,研究了Al含量对局域在GaN/AlxGa1-xN量子点中激子性质的影响.结果表明,随着Al含量的增加,GaN/AlxGa1-xN异质界面处的导带不连续性增强,势垒变高,载流子受到的约束增强,激子结合能增加,电子空穴的复合率先增大后减小,且存在最大值.对给定体积的量子点,随其高度的变化激子结合能存在最大值,相应的电子空穴被最有效约束,激子态最稳定.  相似文献   

7.
本文利用椭圆偏振光谱法测量了用MOCVD方法在GaAs衬底上生长的AlGaInP及AlGaInP掺Si两个样品,在可见光区室温下的光学常数,求得吸收系数、介电函数随光子能量的变化关系。用有效介质近似理论(EMA)和线性内插法计算了样品中Al的组分,并与X射线微区分析法(能谱法)的测量结果加以比较,三者结果相符。  相似文献   

8.
作为全固态微光器件,InxGa1-xAs器件通过调节材料组分x值,其响应波段覆盖夜天光辐射的主要波段,对夜天光的能量利用率高。加之材料量子效率高,器件性能好,可望显著提高夜视系统作战距离;另外,采用半导体常规工艺制作,可完成大面阵、长线列器件制备,无需封装在(超)高真空系统,制备简单;采用CMOS读出电路进行信号数据的读取、传输与放大,有利于进行数据的处理和优化改善。由于具备的以上技术优势,InxGa1-xAs器件成为一种新型的高性能全固态数字化微光器件。InxGa1-xAs器件与传统的微光器件在光电转换原理以及器件制备方面存在不同,决定了两者在性能上存在的差异。文中对此进行了对比分析,分析结果体现了InxGa1-xAs全固态数字化微光器件的技术优势和特点,以及InxGa1-xAs全固态数字化微光器件存在的重要应用和发展需求。  相似文献   

9.
测量了77~300K 范围内 GaAs-AlxGa1-xAs DH 激光器的伏安特性。典型的正向特性曲线可用下式描写:I=I1+I2=Is1exp(AV)+Is1exp(q/nkT V)A 和 n 是只与温度有微弱关系的参数。  相似文献   

10.
The field dependence of drift velocity of electrons in quantum wells of selectively doped In0.5Ga0.5As/Al x In1 − x As and In0.2Ga0.8As/Al x Ga1 − x As heterostructures is calculated by the Monte Carlo method. The influence of varying the molar fraction of Al in the composition of the Al x Ga1 − x As and Al x In1 − x As barriers of the quantum well on the mobility and drift velocity of electrons in high electric fields is studied. It is shown that the electron mobility rises as the fraction x of Al in the barrier composition is decreased. The maximum mobility in the In0.5Ga0.5As/In0.8Al0.2As quantum wells exceeds the mobility in a bulk material by a factor of 3. An increase in fraction x of Al in the barrier leads to an increase in the threshold field E th of intervalley transfer (the Gunn effect). The threshold field is E th = 16 kV/cm in the In0.5Ga0.5As/Al0.5In0.5As heterostructures and E th = 10 kV/cm in the In0.2Ga0.8As/Al0.3Ga0.7As heterostructures. In the heterostructures with the lowest electron mobility, E th = 2–3 kV/cm, which is lower than E th = 4 kV/cm in bulk InGaAs.  相似文献   

11.
张位在 《中国激光》1982,9(11):724-726
用宽度为300微微秒的电脉冲驱动质子轰击条形的Al_xGa_(1-x)As双异质结激光器,产生12微微秒光脉冲。并已经用来检测快速光电二极管的响应速率。  相似文献   

12.
本文报导长寿命连续工作的Al_xGa_(1-x)As-GaAs双异质结激光器结构、特性.升温加速老化实验表明,E_α=0.75±0.05电子伏特.由此推算室温下器件寿命可达8万小时以上.  相似文献   

13.
The DX-center-related short-pulse threshold voltage shifts (SPTVS) in AlxGa1-xAs-based MODFETs is modeled using CBAND, a simulator that solves Poisson equations self-consistently with Schrodinger equations and donor statistics. Using values given in the literature for the DX energy level in AlxGa1-xAs this technique gives good agreement between measured and simulated SPTVS for Al0.3Ga0.7As/GaAs and Al0.3Ga0.7As/In0.2Ga0.8As MODFETs. Both simulation and experiment show that the use of Al0.2 Ga0.8As in the donor layer reduces the SPTVS relative to the structures using Al0.3Ga0.7As. However, the measured shifts at this composition are considerably lower than the simulated values, indicating a DX energy level that may be higher than the value extrapolated from the literature, possibly due to the existence of multiple trap levels. Despite this discrepancy, these results support the use of strained-channel layers and lower Alx Ga1-xAs compositions in MODFETs for digital and other large-signal applications requiring good threshold stability  相似文献   

14.
We report the growth, fabrication and characterization of Al0.4Ga0.6N-Al0.6Ga0.4N back-illuminated, solar-blind p-i-n photodiodes. The peak responsivity of the photodiodes is 27 and 79 mA/W at λ≈280 nm for bias voltages of 0 V and -60 V, respectively, with a UV-to-visible rejection ratio of more than three decades (at 400 nm). These devices exhibit very low dark current densities (~5 nA/cm2 at -10 V). At low frequencies, the noise exhibits a 1/f-type behavior. The noise power density is S0≈5×10-25 A2/Hz at -12.7 V and the detectivity (D*) at 0 V is estimated to be in the range of 4×1011-5×1013 cm·Hz1/2 /W. Time-domain pulse response measurements in a front-illumination configuration indicate that the devices are RC-time limited and show a strong spatial dependence with respect to the position of the incident excitation, which is mainly due to the high resistivity of the p-type Al0.4Ga0.6 N layer  相似文献   

15.
Monte Carlo methods are used to compare electronic transport and device behavior in n+-AlxGa1-xAs/GaAs modulation-doped field-effect transistors (MODFETs) at 300 K for x =0.10, 0.15, 0.22, 0.30, 0.35, and 0.40. The differences between the x=0.22 and x=0.30 MODFETs with respect to parasitic conduction in AlxGa1-xAs, gate currents, and switching times, are of particular interest. The donor-related deep levels in AlxGa1-xAs, are disregarded by assuming all donors to be fully ionized, and the focus is only on the confinement and transport of the carriers. The following quantities are studied in detail: transfer characteristics (ID versus V G), transconductance (gm), switching speeds (τON), parasitic conduction in AlxGa 1-xAs, gate current (IG), average electron velocities and energies in GaAs and AlxGa1-x As, electron concentration in the device domain, k-space transfer (to low mobility L and X valleys), and details of the real-space transfer process  相似文献   

16.
Short-pulse drain current versus gate voltage transfer characteristics measured for modulation-doped HFETs (MODFETs) with four donor-layer-channel-layer combinations-(1) Al0.3Ga0.7 As-GaAs, (2) Al0.2Ga0.8As-GaAs, (3) Al0.3Ga0.7As-In0.2Ga0.8As, and (4) Al0.2Ga0.8As-In0.2 a0.8 As-are compared with the DC transfer characteristics. The measurements are relevant to high-speed switching in HFET circuits. Significant shifts in threshold voltage are observed between the DC and short-pulse characteristics for the structures with n+-Al0.3Ga0.7As donor layers, while the corresponding shifts for structures with n+-Al0.2Ga0.8As donor layers are relatively small or virtually nonexistent  相似文献   

17.
As AlxGa1-xAs alloys are increasingly used for microwave and millimeter wave power devices and circuits that work under high electric field intensities and junction temperatures; understanding the temperature dependence of impact ionization and related properties in this material system becomes more and more important. Measurements of the multiplication gain and noise of avalanche photodiodes (APDs) provide insight to the avalanche characteristics of semiconductors. Previously, we have reported the characteristics of GaAs and Al0.2Ga0.8As APD's at room temperature. In this paper, the gain and noise of a series of homojunction AlxGa1-xAs APD's were investigated over a wide temperature range from 29°C to 125°C, and the temperature dependence of their ionization coefficients was extracted  相似文献   

18.
An investigation of wet oxidized AlxGa1-xAs layers in integrated optical applications is reported. Refractive index and thickness shrinkage of wet oxidized AlxGa1-xAs layers are measured using spectroscopic ellipsometry. A Cauchy fit to the refractive index is found in the wavelength range between 0.3 and 1.6 μm. The refractive index at 1.55 μm is found to be 1.66±0.01 with little dispersion around 1.55 μm. Very low loss single-mode waveguides with metal electrodes showing very low polarization dependence of loss coefficient are fabricated using wet oxidized AlxGa1-xAs layers as upper cladding. Optical polarization splitters are also designed and fabricated from the same type of waveguides taking advantage of increased birefringence. Designs utilizing wet oxidized AlxGa1-xAs are compared with conventional designs using only compound semiconductor heterostructures  相似文献   

19.
A microwave-compatible process for fabricating planar integrated resonant tunneling diodes (RTDs) is described. High-performance RTDs have been fabricated using AlxGa1-xAs/Iny Ga1-yAs/GaAs strained layers. Peak-to-valley current ratios (PVRs) of 4.8:1 with simultaneous peak current densities of 4×104 A/cm2 have been achieved at room temperature for diodes of area 9 μm2. Accurate measurements of reflection gain versus frequency between 1.5 and 26.5 GHz in the negative differential region indicate that the present technology is promising for millimeter-wave integrated circuits including self-oscillating mixers, frequency multipliers, and detectors  相似文献   

20.
The previously unsolved problem of rectification at AlxGa1-xAs-GaAs N-n heterojunction is found to originate from a vague concept regarding the maximum junction grading width which can sustain rectification. The theoretical current density vs voltage characteristics of this heterojunction system are derived from thermionic emission theory. It is found that, unless the impurity concentration of the AlGaAs layer (prepared by LPE techniques) is less than 1016 cm?3, typical 90–200 Å metallurgical grading widths at the N-n heterojunction interface produce either ohmic or poorly rectifying characteristics. These results explain (1) the lack of rectification in most N-n AlxGa1-xAs-GaAs heterojunctions reported in the literature and (2) the recent observation of significant rectification in high purity (N)Al0.3Ga0.7As-(n)GaAs heterojunctions reported by Chandra and Eastman.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号