首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Copper indium sulfide, CuInS2, nanocrystals were synthesized by a new precursor complex, [bis(2-hyroxyacetophenato)copper(ΙΙ)], [Cu(HAP)2], via a microwave method. The effects of sulfur sources, solvents, heating time and microwave power on morphology of product were investigated. The as-synthesized CuInS2 nanoparticles were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), ultraviolet–visible (UV–vis) spectroscopy, and room temperature photoluminescence (PL) spectroscopy. The nanoparticles of CuInS2 were used to prepare CuInS2 film by doctor's blade technique. The fill factor (FF), open circuit voltage (Voc), and short circuit current (Isc) were obtained by I–V characterization.  相似文献   

2.
This paper reports the deposition of CuInS2 on TiO2 nanoarrays, with different depositing amounts and demonstrates the application of TiO2–CuInS2 composites in polymer-based solar cells. The composites of TiO2–CIS1 and TiO2–CIS2 were prepared by the deposition of CuInS2 on TiO2 with one-step or two-step solvethermal reactions, respectively, and characterized by XRD, SEM, TEM, absorption spectrum and PL spectrum. Results showed that TiO2–CIS1 displayed the higher light-harvesting ability and PL quenching efficiency compared to TiO2–CIS2, although less CuInS2 was deposited on TiO2 surface. As a result, polymer/TiO2–CIS1 solar cells displayed much higher Jsc correlated with the increased absorptivity and charge separation efficiency, and the higher Voc was originated from the presence of strong interaction between TiO2 and CuInS2 in TiO2–CIS1 resulting in the effective modification of TiO2 surface by CuInS2.  相似文献   

3.
A chemical method of incorporating copper into indium selenide thin‐films has been investigated, with the goal of creating a precursor structure for conversion into CuInSe2 (CIS) layers suitable for solar cell processing. The precursor and converted layers have been investigated with scanning electron microscopy (SEM), X‐ray diffraction (XRD), Raman spectroscopy and X‐ray photoelectron spectroscopy (XPS). From these measurements, the incorporation of copper into the indium selenide layers is concluded to proceed by an ion‐exchange reaction. This reaction results in the formation of a precursor layer with a graded compositional depth‐profile containing the crystalline phases In2Se3 and Cu2−xSe. Selenisation of the precursor layer homogenises the composition and forms chalcopyrite CIS. These CIS layers exhibit a dense microstructure with rough surface morphology, which is ascribed to a non‐optimal selenisation process. Solar cells with the structure ZnO: Al/i‐ZnO/CdS/CIS/Mo/glass have been processed from the selenised layers and have exhibited efficiencies of up to 4% under simulated AM1·5 illumination. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

4.
The influence of the growth conditions on the surface chemistry and on the homogeneity of the chemical composition of CuInS2 (CIS) thin films, prepared by sequential evaporation of metallic precursors in presence of elemental sulfur in a two-stage process, was studied by X-ray photoelectron spectroscopy (XPS) and X-ray diffraction (XRD). It was found that the growth temperature affects the phase in which this compound grows. The samples deposited at temperatures around 500 °C (2nd stage) contain mainly the CuInS2 phase; however, secondary phases like In2S3, Cu2S were additionally identified at the surface and in the bulk of CuInS2 samples deposited at temperatures greater than 550 °C. Also, the elemental composition of the layers constituting the Glass/Mo/CuInS2/buffer/ZnO structure was studied through Auger electron spectroscopy (AES) depth profile measurements. AES measurements carried out across the Glass/Mo/CuInS2/buffer/ZnO heterojunction gave evidence of Cu diffusion from the CuInS2 layer towards the rest of the layers constituting the device, and of the formation of a MoS2 layer in the Mo/CuInS2 interface. The performance of CuInS2-based solar cells fabricated using CBD (chemical bath deposition) deposited ZnS as buffer layer was compared to that of cells fabricated using CBD deposited In2S3 as buffer.  相似文献   

5.
CuInS2 microspheres were synthesized by Ultrasonic method in propylene glycol as solvent and copper oxalate, indium chloride and thioacetamde (TAA) as precursors. Optimum conditions such as reaction time, solvent type, sulfur source, and ultrasonic power were determined. Then, a thin film of CuInS2 was prepared and its application in solar cells was investigated. Photovoltaic characteristics such as Voc, Jsc and FF were measured. X-ray diffraction (XRD), scanning electron microscopy (SEM) and photoluminescence (PL) spectroscopy were performed to characterize the CuInS2 microsphere. The optical band gap of the CuInS2 microsphere was estimated to be 2.28 eV.  相似文献   

6.
Due to its direct energy band gap of 1.53 eV, which is well matched to the solar spectrum, the ternary compound CuInS2 becomes a promising absorber material for high conversion efficiency solar cells. We report in this paper the preparation and characterization of improved quality CuInS2 films for use as a high-efficiency solar cell absorber. The films were deposited by RF reactive sputter technique, in which the Cu–In alloy target, H2S reactant gas, and soda lime glass and Si wafer substrates were used. The as-deposited films were the CuInS2 chalcopyrite single phase with the preferred orientation of (1 1 2). Void-free films with a grain size of about 400 nm and the constituent ratio [Cu+In]/[S] and [Cu]/[Cu+In] approaching 1 and 0.5, respectively, could be attained by optimizing the process parameters, and films with outstanding electrical characteristics could thus be obtained.  相似文献   

7.
We report on solution‐processed hybrid solar cells consisting of a nanocrystalline inorganic semiconductor, CuInS2, and organic materials. Synthesis of quantized CuInS2 nanoparticles was performed using a colloidal route, where the particle surface was shielded by an organic surfactant. First attempts were made to use nanocrystalline CuInS2 with fullerene derivatives to form flat‐interface donor–acceptor heterojunction solar cells. We investigated also bulk heterojunctions by replacing the CuInS2 single layer by a blend of CuInS2 and p‐type polymer (PEDOT:PSS; poly(3,4‐ethylenedioxythiophene:poly(styrene sulfonic acid) in the same cell configuration. Bulk heterojunction solar cells show better photovoltaic response with external quantum efficiencies up to 20 %.  相似文献   

8.
A comparative study of chemical bath deposition (CBD) of ZnS, CdS, and a mixture of (Cd,Zn)S buffer layers has been carried out on electrodeposited CuIn(S,Se)2 (CISSe) and coevaporated Cu(In,Ga)Se2 (CIGS) absorbers. For an optimal bath composition with the ratio of [Zn]/[Cd] = 25, efficiencies higher than those obtained with CdS and ZnS recipes, both on co‐evaporated CIGS and electrodeposited CISSe, have been obtained independent of the absorber used. In order to better understand the (Cd,Zn)S system and its impact on the increased efficiency of cells, predictions from the solubility diagrams of CdS and ZnS in aqueous medium were made. This analysis was completed by in situ growth studies with varying bath composition by quartz crystal microbalance (QCM). The morphology and composition of the films were studied using scanning electron microscopy (SEM) and X‐ray photoelectron spectra (XPS) techniques. Preliminary XPS studies showed that films are composed of a mixture of CdS and Zn(O,OH) phases and not a pure ternary Cd1 − xZnxS compound. The effect of the [Zn]/[Cd] molar ratio on properties of the corresponding CISSe and CIGS solar cells was investigated by current voltage [J(V)] and capacitance voltage [C(V)] characterizations. The origin of optimal results is discussed. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

9.
Recent progress in fabricating Cd‐ and Se‐free wide‐gap chalcopyrite thin‐film solar devices with Zn(S,O) buffer layers prepared by an alternative chemical bath process (CBD) using thiourea as complexing agent is discussed. Zn(S,O) has a larger band gap (Eg = 3·6–3·8 eV) than the conventional buffer material CdS (Eg = 2·4 eV) currently used in chalcopyrite‐based thin films solar cells. Thus, Zn(S,O) is a potential alternative buffer material, which already results in Cd‐free solar cell devices with increased spectral response in the blue wavelength region if low‐gap chalcopyrites are used. Suitable conditions for reproducible deposition of good‐quality Zn(S,O) thin films on wide‐gap CuInS2 (‘CIS’) absorbers have been identified for an alternative, low‐temperature chemical route. The thickness of the different Zn(S,O) buffers and the coverage of the CIS absorber by those layers as well as their surface composition were controlled by scanning electron microscopy, X‐ray photoelectron spectroscopy, and X‐ray excited Auger electron spectroscopy. The minimum thickness required for a complete coverage of the rough CIS absorber by a Zn(S,O) layer deposited by this CBD process was estimated to ∼15 nm. The high transparency of this Zn(S,O) buffer layer in the short‐wavelength region leads to an increase of ∼1 mA/cm2 in the short‐circuit current density of corresponding CIS‐based solar cells. Active area efficiencies exceeding 11·0% (total area: 10·4%) have been achieved for the first time, with an open circuit voltage of 700·4 mV, a fill factor of 65·8% and a short‐circuit current density of 24·5 mA/cm2 (total area: 22·5 mA/cm2). These results are comparable to the performance of CdS buffered reference cells. First integrated series interconnected mini‐modules on 5 × 5 cm2 substrates have been prepared and already reach an efficiency (active area: 17·2 cm2) of above 8%. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

10.
This paper reports the size-dependent performance in polymer/CuInS2 solar cells with tunable synthesis of chalcopyrite CuInS2 quantum dots (QDs) by the solvothermal method. The CuInS2 QDs of 3.2–5.4 nm in size are fine tuned by the reaction time in the solvothermal process with the slow supply of In3+ ions during the crystallization, and the band gaps increased with QDs sizes decreasing according to the results from the characterization of sizes, morphologies, component elements, valence states and band gaps of CuInS2 QDs. We fabricated MEH-PPV/CuInS2 solar cells, and the photoactive layer of device displayed size-dependent light-harvesting, charge separation and transport ability. Moreover, the solar cells exhibit size-dependent short circuit current (Jsc) and open circuit voltage (Voc), with higher performance in both Jsc and Voc for smaller CuInS2 QDs, resulting in the maximum power conversion efficiency of ca. 0.12% under the monochromic illumination at 470 nm; CuInS2 QDs actually serve as an effective electron acceptor material for the MEH-PPV/CuInS2 solar cells with the wide spectral response extending from 300 to 900 nm.  相似文献   

11.
Colloidally synthesized CuInS2 nanocrystals are a promising candidate for hybrid solar cell applications due to suitable optical and transport properties of copper indium disulfide and being it an eco-friendly material. However, as opposite to solar cells where CuInS2 is synthesized in situ in a conductive polymer matrix, advances in the field of hybrid solar cells containing colloidal CuInS2 nanocrystals that are blended after synthesis with a polymer are still negligible. Here, we report about the influence of pyridine, alkylamine, and hexanethiol stabilizing ligands on the morphology of the active layer and the electrical characteristics of solar cells based on elongated and pyramidal CuInS2 nanocrystals blended with poly(3-hexylthiophene) (P3HT). All CuInS2 nanocrystals used within this study had a wurtzite crystal structure as revealed by X-ray diffraction. With pyridine as ligand, the morphology was found to depend strongly on the shape of the nanocrystals. Strong agglomeration was observed in the case of elongated nanocrystals and explains the low performance of corresponding solar cells. Employment of hexanethiol as ligand resulted in an improvement of the morphology of the CuInS2/P3HT layers and enhancement of the rectification ratio of the laboratory solar cells. Nevertheless, it was found that morphology of the active layer is not the main limiting factor in the CuInS2/P3HT system. According to cyclic voltammetry measurements, unsuitable alignment of the energy levels for CuInS2 nanocrystals and P3HT was observed. Taking this fact into account, appropriate donor materials for CuInS2 based bulk heterojunctions are discussed.  相似文献   

12.
The method of heat treatment of metallic Cu-In-Ga layers in the N2 inert atmosphere in the presence of selenium and sulfur vapors was used to grow homogeneous films of Cu(In,Ga)(S,Se)2 alloys onto which the CdS or In2S3 films were deposited and, on the basis of these structures, the thin-film glass/Mo/p-Cu(In,Ga) (S,Se)2/n-(In2S3,CdS)/n-ZnO/Ni-Al photoelements were fabricated. The mechanisms of charge transport and the processes of photosensitivity in the obtained structures subjected to irradiation with natural and linearly polarized light are discussed. The broadband photosensitivity of thin-film heterophotoelements and the induced photopleochroism were detected; these findings indicate that there is an interference-related blooming of the structures obtained. It is concluded that it is possible to use ecologically safe cadmium-free thin-film heterostructures as high-efficiency photoconverters of solar radiation.  相似文献   

13.
Optical and recombination losses in a Cu(In,Ga)Se2 thin-film solar cell with a band gap of 1.36–1.38 eV are theoretically analyzed. The optical transmittance of the ZnO and CdS layers through which the radiation penetrates into the absorbing layer is determined. Using optical constants, the optical loss caused by reflection at the interfaces (7.5%) and absorption in the ZnO and CdS layers (10.2%) are found. To calculate the recombination loss, the spectral distribution of the quantum efficiency of CdS/CuIn1–xGaxSe2 is investigated. It is demonstrated that, taking the drift and diffusion components of recombination at the front and rear surfaces of the absorber into account, the quantum efficiency spectra of the investigated solar cell can be analytically described in detail. The real parameters of the solar cell are determined by comparing the calculated results and experimental data. In addition, the losses caused by the recombination of photogenerated carriers at the front and rear surfaces of the absorbing layer (1.8% and <0.1%, respectively), at its neutral part (7.6%), and in the space-charge region of the p–n heterojunction (1.0%) are determined. A correction to the parameters of Cu(In,Ga)Se2 is proposed, which enhances the charge-accumulation efficiency.  相似文献   

14.
It has been well known that incorporation of nano-heterostructures of various metals, semiconductors and dielectric materials in the active layer of organic solar cells (OSCs) helps in improving power conversion efficiency (PCE). In the present study, we demonstrated microwave synthesis of CdS nanoparticles (NPs) for their application in one of most efficient OSCs consisting of poly[[4,8-bis[(2-ethylhexyl)oxy]benzo[1,2-b:4,5-b′]dithiophene-2,6-diyl] [3-fluoro-2-[(2-ethylhexyl)carbonyl] thieno[3,4-b]thiophenediyl]] (PTB7): [6,6]-phenyl C71-butyric acid methyl ester (PCBM) photoactive blend. This is crucial to fully explore the promising features of low cost and scalability in organic-inorganic hybrid solar cells. Synthesized CdS NPs are slightly elongated and highly crystalline with their absorption lies in the visible region as confirmed by High resolution transmission electron microscopy (HRTEM), X-ray diffraction (XRD), UV–Vis absorption spectroscopy studies. Our experimental results for the devices in an inverted geometry having a structure ITO/ZnO/PTB7: CdS: PCBM/MoO3/Ag has shown increase in Jsc and PCE by nearly 10%. However, it was observed that this increase is only when NPs were added in the low concentration in active layer. UV–Vis absorption spectroscopy, Photoluminescence (PL) and atomic force microscopy (AFM) studies were carried out in order understand the device performance.  相似文献   

15.
This study is devoted to the properties of the CuInS2 (CIS) surface and the effect of thin organic layers on them. The CIS layers under study feature photosensitivity in the range of 1.5–3 eV. A quadratic approximation of the long-wavelength edge of a spectral dependence of the photovoltage yields the band gap E g =1.46±0.02 eV. It is shown that the major contribution to the formation of the barrier near the CIS free surface is made by acceptor levels arranged higher than the CIS valence band top by ~0.1 and ~0.2 eV. As a polymeric layer is deposited onto the CIS free surface, the potential barrier height slightly decreases, while the carrier transport efficiency simultaneously increases. As an organic p-type semiconductor is deposited onto the CIS free surface, trapping centers are partially neutralized, and the carrier recombination rate on the CIS film surface decreases.  相似文献   

16.
This paper is focused on the basic study and optimization of short time (<10 min) Chemical Bath Deposition (CBD) of Zn(S,O,OH) buffer layers in co‐evaporated Cu(In,Ga)Se2 (CIGSe) and electrodeposited CuIn(S,Se)2 ((ED)‐CIS) solar cells for industrial applications. First, the influence of the deposition temperature is studied from theoretical solution chemistry considerations by constructing solubility diagrams of ZnS, ZnO, and Zn(OH)2 as a function of temperature. In order to reduce the deposition time under 10 min, experimental growth deposition studies are then carried out by the in situ quartz crystal microgravimetry (QCM) technique. An optimized process is performed and compared to the classical Zn(S,O,OH) deposition. The morphology and composition of Zn(S,O,OH) films are determined using SEM and XPS techniques. The optimized process is tested on electrodeposited‐CIS and co‐evaporated‐CIGSe absorbers and cells are completed with (Zn,Mg)O/ZnO:Al windows layers. Efficiencies similar or even better than CBD CdS/i‐ZnO reference buffer layers are obtained (15·7% for CIGSe and 8·1% for (ED)‐CIS). Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

17.
Copper indium disulfide (CuInS2) is an efficient absorber material for photovoltaic and solar cell applications. The structural, optical, photoluminescence properties and electrical conductivities could be controlled and modified by suitably doping CuInS2 thin films with dopants such as Zn, Sn, Bi, Cd, Na, N, O, P and As. In this work Zn (0.01 M) doped CuInS2 thin films are (Cu/In=1.25) deposited on to glass substrates in the temperature range 300–400 °C. It is observed that the film growth temperature, ion ratio (Cu/In=1.25) and Zn-doping affect structural, optical, photoluminescence and electrical properties of sprayed CuInS2 thin films. As the XRD patterns depict, Zn-doping facilitates the growth of CuInS2 thin films along (112) preferred plane and in other characteristic planes. The EDAX results confirm the presence of Cu, In, S and Zn in the films. The optical studies show, about 90% of light transmission occurs in the IR regions; hence Zn-doped CuInS2 can be used as an IR transmitter. The absorption coefficient (α) in the UV–visible region is found to be in the order of 104–105 cm−1 which is the optimum value for an efficient absorber. The optical band gap energies increase with increase of temperatures (1.66–1.78 eV). SEM photographs reveal crystalline and amorphous nature of the films at various temperature ranges. Photoluminescence study shows that well defined broad Blue and Green band emissions are exhibited by Zn-doped CuInS2 thin films. All the films present low resistivity (ρ) values and exhibit semiconducting nature. An evolution of p-type to n-type conductivity is obtained in the temperature range 325–350 °C. Hence, Zn species can be used as a donor and acceptor impurity in CuInS2 thin films to fabricate efficient solar cells, photovoltaic devices and good IR Transmitters.  相似文献   

18.
The off‐stoichiometry effects and gram‐scale production of luminescent CuInS2‐based semiconductor nanocrystals, as well as their application in electroluminescence devices are reported. The crystal structures and optical properties of CuInS2 nanocrystals can be significantly influenced by controlling their [Cu]/[In] molar ratio. A simple model adapted from the bulk materials is proposed to explain their off‐stoichiometry effects. Highly emissive and color‐tunable CuInS2‐based NCs are prepared by a combination of [Cu]/[In] molar ratio optimization, ZnS shell coating, and CuInS2–ZnS alloying. The method is simple, hassle‐free, and easily scalable to fabricate tens of grams of nanocrystal powders with photoluminescence quantum yields up to around 65%. Furthermore, the performance of high‐quality CuInS2‐based NCs in electroluminescence devices is examined. These devices have lower turn‐on voltages of around 5 V, brighter luminance up to approximately 2100 cd m?2 and improved injection efficiency of around 0.3 lm W?1 (at 100 cd m?2) in comparison to recent reports.  相似文献   

19.
CuInS2 and ZnS are miscible so that quaternary ZnS–CuInS2 alloys can be obtained. This opens the possibility to tune optical properties of the material in a wide range via control of the elemental composition. In the present work, ZnS–CuInS2 nanorods were synthesized by means of colloidal chemistry. Their absorption properties were studied in detail, and different types of optical transitions identified. In view of optoelectronic applications, the nanoparticles were examined for their suitability as absorber material in hybrid polymer/nanoparticle solar cells. Therefore, the nanorods were combined with a common low band gap polymer. Cyclic voltammetry and electron spin resonance were used to study the alignment of the energy levels at the heterojunction as well as the possibility of charge transfer. The material combination forms a type II heterojunction, but with the nanoparticles acting as electron donor material. The blends were implemented in hybrid solar cells. Although the photocurrent density and efficiency achieved were relatively low, the system showed a high open-circuit voltage exceeding the value 1 V.  相似文献   

20.
In this work, molecular tuning of metal xanthate precursors is shown to have a marked effect on the heterojunction morphology of hybrid poly(3‐hexylthiophene‐2,5‐diyl) (P3HT)/CdS blends and, as a result, the photochemical processes and overall performance of in situ fabricated hybrid solar cells. A series of cadmium xanthate complexes is synthesized for use as in situ precursors to cadmium sulfide nanoparticles in hybrid P3HT/CdS solar cells. The formation of CdS domains is studied by simultaneous GIWAXS (grazing incidence wide‐angle X‐ray scattering) and GISAXS (grazing incidence small‐angle X‐ray scattering), revealing knowledge about crystal growth and the formation of different morphologies observed using TEM (transmission electron microscopy). These measurements show that there is a strong relationship between precursor structure and heterojunction nanomorphology. A combination of TAS (transient absorption spectroscopy) and photovoltaic device performance measurements is used to show the intricate balance required between charge photogeneration and percolated domains in order to effectively extract charges to maximize device power conversion efficiencies. This study presents a strong case for xanthate complexes as a useful route to designing optimal heterojunction morphologies for use in the emerging field of hybrid organic/inorganic solar cells, due to the fact that the nanomorphology can be tuned via careful design of these precursor materials.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号