首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
本文基于微观相场法和原子间相互作用势方程,计算出Co-Pt合金中L10结构第一近邻原子间相互作用势,计算结果得到Co-Pt合金中L10结构第一近邻原子间相互作用势随温度增大而增大,随浓度增大而增大,且计算得到的随温度和浓度变化的原子间相互作用势与之前的实验值符合较好。利用计算的原子间相互作用势模拟了Co-Pt合金沉淀过程以及最终形貌,模拟结果能得到L10和L12结构,根据序参数可以得到L10结构的沉淀转变机制特征是失稳分解,而后粗化长大且最终两相体积分数接近,合金沉淀形貌与实验结果符合。相场法计算Co-Pt合金中L10结构原子间相互作用势,拓展了相场法在含L10结构的合金设计中的应用范围。  相似文献   

2.
In integrated circuit-grade single silicon Czochralski growth,the position and material of heat shield are main parameters affecting the heat exchange and crystal growth condition.By optimizing the above parameters,we attempted to increase the growth rate and crystal quality.Numerical simulation proved to verify the results before and after optimization.Through analyses of the temperature and microdefect distribution,it is found that the optimized heat shield can further increase the pulling rate and decrease the melt/crystal interface deflection,increase the average velocity of argon flow from ~2 to ~5 m·s-1,which is in favor of the transportation of SiO,and obtain the low defects concentration crystal and that the average temperature along the melt-flee surface is 8 ℃ higher than before avoiding supercooled melt effectively.  相似文献   

3.
Non-linear finite element code MSC. Marc was utilized to analysis the field of stress of the Al2O3 joints brazed with composite filler materials. The properties of the filler materials were defined by using the mixing law, method of Mori-Tanaka and theory of Eshelby to ensure the accuracy and reliability of results of finite element method (FEM). The results show stress in brazed beam is higher than that in base material. The maximal stress can be found in the interface of joint. And the experimental results show that the shear strength of joints increases from 93.75 MPa ( Al2O3p Ovol. % ) to 135.32 MPa ( Al2O3p 15vol. % ) when composition of titanium is 3wt% in the filler metal.  相似文献   

4.
A new roll-bending model is proposed which improves upon traditional roll-bending processes. The new forming model not only resolves some inadequacies of traditional roll-bending processes, but also allows more flexibility in the formation of large bending parts. The upper-bound and lower-bound methods are used to research the bending mechanisms of roll-bending processes and to provide some rules for the development of a new roll-bending process. Finite element modeling is also implemented for comparison with the upper-bound and lower bound results. Finally, a roll-bending experiment was carried out to attempt a real application, with the design of the experimental device based on the new roll-bending concept. All these efforts demonstrate that the new roll-bending model has potential for future use in industry.  相似文献   

5.
Electron beam welding(EBW) has been widely used in the manufacture of titanium alloy welded blisk for aircraft engines. Based on fatigue crack growth tests on titanium alloy electron beam welding(EBW) joints, mechanism of fracture was investigated under scanning electron microscope(SEM). The results show that fatigue crack growth rate increases as the experimental load increases under the same stress ratio and stress intensity factor range. At the beginning of crack growth, the extension mechanism of fatigue crack is the typical mechanism of cleavage fracture. In the steady extention stage, crack extends along the weld seam firstly.Then, crack growth direction changes to extend along the base metal. The extension mechanism of fatigue crack in the weld seam is the main mechanism of cleavage fracture and the extension mechanism of fatigue crack in the base metal is the main extension mechanism of fatigue band. In the instantaneous fracture stage, the extension mechanism of fatigue crack is the typical dimple-type static fracture mechanism.Crack growth was simulated by conventional finite element method and extended finite element method.  相似文献   

6.
电磁成形技术理论与应用的研究进展   总被引:1,自引:0,他引:1  
韩飞  莫健华  黄树槐 《锻压技术》2006,31(6):4-8,32
电磁成形技术是一种新型的高能率金属塑性加工技术,具有较高的经济性和实用性。本文从磁场力、工件的变形两方面简明扼要的阐述了电磁成形理论研究现状;列举了大量的国内、外电磁成形的工艺应用及最新研究成果;并对其未来发展趋势进行了展望。  相似文献   

7.

The distinctions of dendritic morphology and sidebranching behavior when solidified under atmosphere pressure, constant pressure which is higher than atmosphere pressure (hereinafter referred to as constant pressure) and periodic pressure were investigated using 3-D phase field method. When growing at atmosphere pressure, side branches (secondary dendritic arms) are irregular. When solidified under constant pressure with a relatively high value, side branches are much more luxuriant, with more developed high-order side branches. When applied with periodic pressure, resonant sidebranching happens, leading to many more regular side branches and the smallest secondary dendritic arm spacing (SDAS) in the three cases. The significant difference in dendritic morphology is associated with tip velocity modulated by total undercooling including pressure and temperature undercooling. In the case of constant pressure, tip velocity increases linearly with total undercooling, and it varies periodically in periodic pressure case. The different variation trend in tip velocity is the reason for the distinct dendrite growth behavior in different cases. Unlike the phenomenon in constant pressure case where the dendrite grows faster with higher pressure, the dendrite grows slower under periodic pressure with higher amplitude, resulting in less developed primary dendrite and side branches. This is influenced by tip remelting due to low undercooling or even negative undercooling. It is revealed that the accelerated velocity of tip remelting increases with the decline of undercooling. The greater the amplitude of periodic pressure, the faster the tip remelting velocity during one period. This is the reason why the average tip velocity decreases with the rise of amplitude of periodic pressure.

  相似文献   

8.
ABSTRACT

Magnetic pulse welding (MPW) provides an efficient route to join overlapping metallic tubes by the application of a high magnitude electromagnetic (EM) force. The process is rapidly transient in nature with little scope to comprehend and monitor the evolution of the joint by experimental means. A comprehensive computational process model is presented here to analyse the transient nature of EM field and force, and resulting impact and plastic deformation during MPW of metallic tubes. The computed results are validated with the corresponding experimentally measured weld joint length for specific tube joint geometries. The computed values of the plastic deformation, impact angle and impact velocity along the joint interface are examined further to realise the progressive nature of the joint formation.  相似文献   

9.
板材连续剪切变形技术(Continuous Confined Strip Shearing)以下简称C2S2是实现材料纯剪切变形的有效方法。介绍了C2S2的基本原理,对其所产生的剪切应变进行了计算和理论分析,并采用MAFAP4.0软件对其成形过程进行了模拟。模拟结果表明,通道转角Ф、外弧角ψ等因素对材料的变形量有不同程度的影响。  相似文献   

10.
The portfolio of available synchrotron radiation techniques is increasing notably for cements and pastes. Furthermore, sometimes the terminology is confusing and an overall picture highlighting similarities and differences of related techniques was lacking. Therefore, the main objective of this work is to review recent advances in synchrotron techniques providing a comprehensive overview. This work is not intended to gather all publications in cement chemistry but to give a unified picture through selected examples. Crystallographic techniques are used for structure determination, quantitative phase analyses and microstructure characterization. These studies are not only carried out in standard conditions but synchrotron techniques are especially suited to non-ambient conditions: high temperatures and pressures, hydration, etc., and combinations. Related crystallographic techniques, like Pair Distribution Function, are being used for the analysis of ill-crystalline phase(s). Furthermore, crystallographic tools are also employed in imaging techniques including scanning diffraction microscopy and tomography and coherent diffraction imaging. Other synchrotron techniques are also reviewed including X-rays absorption spectroscopy for local structure and speciation characterizations; small angle X-ray scattering for microstructure analysis and several imaging techniques for microstructure quantification: full-field soft and hard X-ray nano-tomographies; scanning infrared spectro-microscopy; scanning transmission and fluorescence X-ray tomographies. Finally, a personal outlook is provided.  相似文献   

11.
A halide-activated, cementation pack has been developed to codeposit either silicon and boron or else silicon and germanium in a single processing/reaction step to grow Ti-silicide diffusion coatings on commercially pure (CP) titanium, Ti-22Al-27Nb, and Ti-20Al-22Nb. Since boron is nearly insoluble in TiSi2, a TiB2 layer is localized at the surface of the B-modified silicide coatings. The thickness of the TiB2 layer is controlled by the choice of boron activity and halide activator in the pack. Germanium is soluble in the Ti-silicide layers but inhomogeneously distributed in the Ge-doped silicide coating. The germanium content is controlled by choices of the Si-to-Ge ratio and the halide activator in the pack. The growth kinetics for the five-layered B-modified silicide coatings are generally similar to the undoped silicide coatings. The growth mechanism for the five-layered Ge-doped silicide coatings is generally different from the undoped silicides. The growth of dual-layer Ti-boride coatings was also studied.  相似文献   

12.
A recently developed AlMgSc alloy is studied since this material, which is well adapted to the aeronautic domain, is poorly known.The first objective is to reach a better knowledge of this alloy to provide the missing useful information to the aeronautic industry and to help research institutes who want to simulate sheet forming processes by Finite Element (FE) simulations. A set of experimental tests has been performed on the as-received sheets, material laws have been chosen and the corresponding material parameters have been adjusted to correctly describe the material behaviour.The second objective is to study the applicability of the Single Point Incremental Forming process (SPIF) on this material. Truncated cones with different geometries were formed and the maximum forming angle was determined. A numerical model was developed and proved to be able to predict both the force evolution during the process and the final geometrical shape. Moreover, the model helps reaching a better understanding of the process.The characterisation method described in this research and applied on the AlMgSc alloy can be extended to other alloys. In addition, the numerical simplified model, able to accurately describe the SPIF process with a reduced computation time, can be used to study more complex geometries.  相似文献   

13.
《CIRP Annals》2019,68(1):373-376
The stream finishing process represents an efficient mass finishing process capable in mechanical surface modification. In order to generate a deeper understanding of the cause-effect relationships, normal forces, material removal and surface topography were analyzed and correlated for varied process parameters of disc-shaped AISI 4140 specimens. Local resolution of tangential velocities of the particles and normal forces on the workpiece’s surface were simulated using the discrete element method for defined process parameter configurations and were correlated with experimental results. A deep process understanding is accomplished enabling the process design for efficient surface smoothing and improved residual stress depth distribution.  相似文献   

14.
于洁  刘忠  袁伟  贺磊  郭前建 《机床与液压》2021,49(17):68-73
结合高速球轴承的拟动力学模型,分析轴承各零件在接触点处的切向摩擦力和相对滑动速度。利用局部分析法建立轴承生热量计算模型。研究转速、载荷和轴承几何结构参数对轴承各单元间的局部生热量和总生热量的影响。搭建轴承试验台,监测轴承生热量随工况的变化规律;将相同条件下的理论计算结果和试验结果进行对比,验证理论模型的正确性。结果表明:轴承在稳定运行时,转速和外加轴向载荷是造成轴承总生热量的主要因素;在球径一定的情况下,内、外圈沟曲率半径系数存在一个使轴承生热量最小的最优值;分析轴承生热量变化规律,有利于轴承的温度场计算、润滑油油量的选取等。研究结果为轴承结构的优化设计提供参考。  相似文献   

15.
1 Introduction Because of the effects of diagenetic process and tectonic movement, lots of jointed plane of weakness with different contacted characteristics exist in the practicable rock mass. The deformation and fracture mechanisms of the rock mass are…  相似文献   

16.
Localized pipe wall damage accounts for many failures. Numerical modelling of pipes under increasing axial load and constant internal pressure when there is corrosion pits on the exterior surface of the pipe is reported herein. It is shown that for the assumed ideal elastic–plastic material the shape and volume of the plastic field depend on pit depth and its geometry. Pipe wall fracture around a pit can be associated with a critical plastic section. The results reported herein should be relevant for estimating of the risk of perforation and of loss of contents for steel pipes under different loading.  相似文献   

17.
1 Introduction The time effect of rock engineering stability is attached importance to with enlarging of the rock engineering scale. The instability instances in-situ and rock laboratory examinations show that the rock instability is owing to crack growt…  相似文献   

18.
In this work, a different wall-thickness 5-step (with thicknesses as 3, 5, 8, 12, 20 mm) casting mold was designed, and squeeze casting of magnesium alloy AM60 was performed under an applied pressure 30, 60 and 90 MPa in a hydraulic press. The casting-die interfacial heat transfer coefficients (IHTC) in the 5-step casting were determined based on thermal histories throughout the die and inside the casting which were recorded by fine type-K thermocouples. With measured temperatures, heat flux and IHTCs were evaluated using the polynomial curve fitting method and numerical inverse method. For numerical inverse method, a solution algorithm was developed based on the function specification method to solve the inverse heat conduction equations. The IHTCs curves for five steps versus time were displayed. As the applied pressures increased, the IHTC peak value of each step was increased accordingly. It can be observed that the peak IHTC value decreased as the step became thinner. Furthermore, the accuracy of these curves was analyzed by the direct modeling calculation. The results indicated that heat flux and IHTCs determined by the inverse method were more accurately than those from the extrapolated fitting method.  相似文献   

19.
Y2O3:Eu3+ phosphors were synthesized by the surface diffusion method (SDM). X-ray diffractometry (XRD), scanning electron microscopy (SEM), and energy dispersive spectrometry (EDS) were used to characterize the structure, morphology and component of Y2O3:Eu3+ phosphors. The photoluminescent (PL) properties were also investigated. The results reveal that the PL intensity of Y2O3:Eu3+ phosphors prepared by the surface diffusion method (SDM) is much higher than that prepared by homogeneous co-precipitation. Th...  相似文献   

20.
张根元  徐迈里  吴建建  陈洪莲 《电焊机》2008,38(1):26-28,67
基于材料等温下所有晶粒长大的同步性,认为单元进行再取向尝试时采用随机提取更符合物理模型,且所有单元全部提取并完成一次再取向尝试记为一个MCS,弥补了以往模拟中采用逐一提取单元的不足.晶粒长大模拟结果符合大晶粒不断变大且有相似性,小晶粒的无规则随机变小的规律.采用了对晶粒个数、面积的精确统计算法,得出晶粒长大指数达到0.48~0.51.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号