共查询到20条相似文献,搜索用时 16 毫秒
1.
ZnS thin films were deposited at different temperatures on glass substrates by chemical bath deposition method without stirring the deposition bath. With deposition temperature increasing from 50 °C to 90 °C, pH decreases rapidly, homogeneous precipitation of ZnS, instead of Zn(OH)2 easily forms in the bath. It means that higher temperature is favorable for the formation of relatively high stoichiometric film, due to the lower concentration of OH−. The thickness of the films deposited at 90 °C is much higher than that of the films deposited at 50 °C and 70 °C. Combining the film thickness with the change of pH, the growth of film, especially deposited at 90 °C mainly comes from the fluctuation region of pH. At the same time, with the increase of deposition temperature, the obtained films are transparent, homogeneous, reflecting, compact, and tightly adherent. The ZnS films deposited for 1.5 h, 2 h and 2.5 h at 70 °C and 90 °C have the cubic structure only after single deposition. The average transmission of all films, especially the thicker films deposited at 90 °C, is greater than 90% for wavelength values in the visible region. Comparing with the condition of stirring, the structural and optical properties of films are improved significantly. The direct band gaps range from 3.93 to 4.06 eV. 相似文献
2.
The growth of nanocrystalline zinc sulfide thin films onto glass substrates by chemical bath deposition has been optimized at acidic pH. Powder X-ray diffraction (p-XRD) confirms the deposition of sphalerite, the cubic phase of ZnS. The crystallite size calculated by Scherrer equation was found to be 4.0 nm. Scanning Electron Microscopy (SEM) show clusters of spherical nanoparticles uniformly distributed over the surface of the glass substrates. Energy Dispersive X-ray (EDX) analysis of the deposited thin films show the zinc to sulfur ratio close to 1:1. The observed band gap (3.78 eV) of the deposited thin films is higher than that reported for cubic phase of bulk ZnS (3.54 eV) as expected due to nano-size crystallites. Binding energies calculated by X-ray Photoelectron Spectroscopy (XPS) confirm the material as ZnS and the photoluminescence measurements show the blue shift in emission maximum. 相似文献
3.
ZnS thin films were deposited from four different zinc salts on glass substrates by chemical bath deposition method. Different anions of zinc salts affect the deposition mechanism and growth rate, which influence the properties of the films significantly. The ZnS thin film deposited from ZnSO4 is smoother, thicker, more homogeneous and compact, nearly stoichiometric, comparing with the films deposited from Zn(CH3COO)2 and Zn(NO3)2, and ZnCl2. The scratch test of bonding force between ZnS film and substrate shows that the ZnS film deposited from ZnSO4 has the most excellent adhesion with the substrate. The presence of SO42− promotes heterogeneous ZnS thin film growth via ions by ions deposition, and the films deposited from Zn(CH3COO)2 and Zn(NO3)2 are formed via clusters by clusters deposition. XRD and HRTEM results show that cubic ZnS films are obtained after single deposition, and the grain size of ZnS thin film deposited from ZnSO4 for 2.5 h is 10 nm. The average transmission of all films is greater than 85% in the wavelength ranging from 600 to 1100 nm, and the transmission of films deposited from ZnSO4 or Zn(NO3)2 for 1.5, 2 and 2.5 h is greater than 85% in the wavelength varying from 340 to 600 nm, which can enhance the blue response. The band gaps of all ZnS thin films are in the range of 3.88–3.99 eV. After annealing treatment, the mechanical and optical properties of the ZnS thin film deposited from ZnSO4 are improved significantly. 相似文献
4.
CdSe nanoparticle thin films were deposited on glass substrates by the chemical bath deposition (CBD) method at low deposition temperature ranging from room temperature up to 50 °C while the pH of the bath was kept constant at 12.1. The structural and morphological variation were investigated by X-ray diffraction (XRD) and scanning electron microscopy (SEM) technique. The energy band gap and optical properties were characterized by the absorbance spectra. Rutherford backscattering spectroscopy (RBS) analysis reveals the excess of Cd rather than Se in depth profile along the thin film thickness. The prepared CdSe nanoparticles have cubic structure and by increasing the temperature the deposited films become continues, homogeneous and tightly adherent. The results also revealed that by increasing the deposition temperature from room temperature up to 50 °C, the band gap decreases from 3.52 eV up to 1.84 eV. 相似文献
5.
Yu Zhao Zhiqiang Yan Jun Liu Aixiang Wei 《Materials Science in Semiconductor Processing》2013,16(6):1592-1598
Cadmium selenide (CdSe) nanocrystalline thin films were prepared by chemical bath deposition (CBD) using ammonia and triethanolamine (TEA) as complexing agents, cadmium chloride and sodium selenosulphate as the sources of Cd2+ and Se2? ions, respectively. The structural and optical properties of CdSe nanocrystalline thin films were investigated as a function of the sodium selenosulphate concentrations or ammonia concentrations in precursors using scanning electron microscopy (SEM), energy dispersive spectrometer (EDS), X-ray diffraction (XRD) measurements, transmission electron microscopy (TEM) and UV–visible spectrophotometer measurements. The results reveal that the CdSe thin films are in the pure cubic phase, which composed of a large number of uniform spherical particles. Each spherical particle contains many nanocrystals 3–10 nm in crystallite size. An increase in both the average diameter of the spherical particles and the crystallite size of the nanocrystals occurs with an increase in ammonia concentrations. The Se/Cd atom ratios of CdSe thin films firstly increase and then decrease with an increase in ammonia concentration or sodium selenosulphate concentration. The optical band gap of CdSe thin films decrease with an increase in ammonia concentrations. The kinetics and reaction mechanism of the CdSe nanocrystalline thin films during deposition are discussed. 相似文献
6.
Influence of Sn content on properties of ZnO:SnO2 thin films deposited by ultrasonic spray pyrolysis
F. Ynineb A. Hafdallah M.S. Aida N. Attaf J. Bougdira H. Rinnert S. Rahmane 《Materials Science in Semiconductor Processing》2013,16(6):2021-2027
The present work is devoted to the preparation of zinc oxide (ZnO): tin oxide (SnO2) thin films by ultrasonic spray technique. A set of films are deposited using a solution formed with zinc acetate and tin chloride salts mixture with varied weight ratio R=[Sn/(Zn+Sn)]. The ratio R is varied from 0 to 100% in order to investigate the influence of Sn concentration on the physical properties of ZnO:SnO2 films. The X rays diffraction (XRD) analysis indicated that films are composed of ZnO and SnO2 distinct phases without any alloys or spinnel phase formations. The average grain size of crystallites varies with the ratio R from 17 to 20 nm for SnO2 and from 24 to 40 nm for ZnO. The obtained films are highly transparent with a transmission coefficient equal to 80%. An increase in Sn concentration increases both the effective band gap energy from 3.2 to 4.01 eV and the photoluminescence intensity peak assigned defects to SnO2. The films electrical characterization indicated that films are resistive. Their resistivities vary between 1.2×102 and 3.3×104 (Ω cm). The higher resistivity is measured in film deposited with a ratio R equal to 50%. 相似文献
7.
Chemically deposited CdS exhibits high sensitivity in the opto-electrical performance to the growth mechanisms. Hence it is of a great interest to study the effects of growth mechanisms on the opto-electrical performance in such films. Studies were carried out by the means of spectroscopic ellipsometry, and coupled with structural, optical, and electrical characterization. A range of bath temperatures (55 °C–95 °C) were used as the means to alter the growth mechanisms. Ion-by-ion process dominated deposition at lower bath temperatures throughout the length of the deposition. This mechanism produced films composed of single phase cubic crystals with corresponding opto-electrical properties inherent to such structures. Complex formations at higher bath temperatures supplement the sole ion-by-ion mechanisms with the cluster-by-cluster mechanism. This results in a mixed cubic/hexagonal structure, and deviation from stoichiometry. As a result, carrier concentrations and mobility increased nearly eight and four fold respectively. Resistivity decreased more than four times from 33.2 to 7.5 Ω cm. A noticeable decrease of, ~0.2 was observed in the refractive index and an increase of ~0.07 eV in the band gap is also reported. Nuclear magnetic resonance analysis confirms deviation from stoichiometry in the cluster-by-cluster mechanisms, resulting in interstitially trapped Cd+2 and S−2 ions. The trapped ions act as donors in the film enhancing its electrical performance. 相似文献
8.
A series of lead selenide (PbSe) films was deposited at constant bath temperature with various deposition time (3–5 h) using simple chemical bath deposition techniques, to study the effect of deposition time on its structural and thermoelectric properties. The as-deposited film was analyzed through X-ray diffraction, SEM, Energy dispersive X-ray analysis, Raman spectroscopy and Seebeck coefficient measurement. The improvement of crystallinity of the PbSe films was studied using X-ray diffraction and Raman scattering. The structural parameters, such as the lattice constant (a), crystallite size (D), dislocation density (δ) and microstrain (ε) were evaluated from the XRD spectra. Average crystallite size was calculated from Scherrer׳s formula and it was found to be increased from 19.65 to 23.97 nm as the deposition time was varied from 3 h to 5 h. The dislocation density and microstrain were found to vary inversely with the crystallite size, whereas the lattice constant increases with an increase in crystallite size. SEM images show that the morphology of particles strongly depends on the deposition time. The possible growth mechanism for the variation in the morphology is discussed. The thermoelectric measurements have shown n-type conductivity in “as deposited films” and the magnitude of Seebeck coefficient is found to be increasing with an increase in deposition time. 相似文献
9.
Aixiang Wei Jun Liu Mixue Zhuang Yu Zhao 《Materials Science in Semiconductor Processing》2013,16(6):1478-1484
Zinc sulfide thin films were prepared by chemical bath deposition technique using zinc sulfate (ZnSO4·7H2O) and thiourea [SC(NH2)2] as sources of Zn2+ and S2– ions, and ammonia (NH3) and hydrazine hydrate (N2H4) as complexing agents. The structural, stoichiometric proportion, morphology and optical properties of the ZnS thin films were investigated as a function of thiourea and ammonia concentrations using X-ray diffraction (XRD), energy-dispersive spectroscopy (EDS), scanning electron microscopy (SEM) and UV-visible spectrophotometry measurements. The deposition mechanism is discussed. The results reveal that the ZnS films exhibit poor crystallinity. The ammonia concentration had an obvious effect on the surface morphology, optical properties and deposition mechanism. The S/Zn atomic ratio and optical bandgap of the ZnS thin films first increased and then decreased with increasing ammonia or thiourea concentration. 相似文献
10.
Antibacterial capabilities of nanocrystalline cadmium sulfide (CdS) thin films have been developed against Gram-positive and Gram-negative bacteria in dark and sunlight at 60 °C. For this purpose, a strain of Gram-positive Staphylococcus aureus, and two strains of Gram-negative bacteria (Pseudomonas aeruginosa, and Escherichia coli) were used. The nanocrystalline CdS thin films have been prepared using a chemical bath deposition (CBD) method at different thicknesses (50, 80 and 100 nm). The different deposition parameters including the speed of rotation of substrate, temperature of chemical bath, pH of solution and time of the deposition were optimized. The Polyvinylpyrrollidone (PVP) was successfully used as capping agent in order to stop the agglomeration in the CdS thin films. It was found that, CdS thin films have remarkable antibacterial activity in dark and sunlight and it could be applied as antimicrobial agent in medical field. In order to confirm the crystalline structure of CdS thin films, the polycrystalline nature of the deposited CdS thin films with hexagonal structure was obtained. Furthermore, the structural parameters including lattice parameters, cell volume, the space group, average grain size, dislocation density and the strain have been calculated. The topography and surface roughness of the CdS thin films have been studied before and after the bacteriostatic effect using Scanning Electron Microscopy (SEM). Furthermore, the compositions of nanocrystalline CdS thin films have been evaluated using Energy Dispersive X-ray emission (EDX) and a Transmission Electron Microscope (TEM). Based on the optical measurements in the range of 300–2500 nm, the band gap energy of the prepared CdS thin films was found to be 2.4 eV. 相似文献
11.
The chalcogenides are the excellent memristor materials. Here we report the resistive switching properties of an amorphous Sb2S3 thin film. Sb2S3 films were deposited on FTO glass using a low-temperature (10 °C) chemical bath deposition technique. SEM and XRD results indicate that the as-grown Sb2S3 film is dense and amorphous with uniform thickness and smooth surface. The Ag/Sb2S3/FTO memristor shows typical bipolar switching behavior with low operating voltage, high resistance ratio, long retention time, and good endurance. The electrical tests demonstrate that the switching behavior of the amorphous Sb2S3 film is based on electrochemical metallization mechanisms. 相似文献
12.
CdTe films were deposited on Ni and conducting glass (SnO2) substrates from an ethylene-glycol-based bath by galvanostatic and potentiostatic methods. The film composition and electrical properties depend on parameters such as working electrode potential current density, deposition temperature, substrate type and post-deposition treatments. It is possible to improve the grain size and stoichiometry of the film by post-deposition heat treatment in air. The conductivity type was determined from the photocurrent-working electrode potential behaviour of the film. Dark capacitance measurements in a 0.5 M H2SO4 solution at 10 kHz showed a linear behaviour, from which the flatband potential Vfb= −0.365 V vs. a saturated calomel electrode (SCE) and the doping density ND = 1.35 × 1018 cm−3 were determined. © 1997 John Wiley & Sons, Ltd. 相似文献
13.
High-quality lead sulfide (PbS) thin films were synthesized by chemical bath deposition from two baths with different compositions. One of them (bath-І) contained an aqueous solution of lead acetate, thiourea, sodium hydroxide, and the second (bath-ІІ) had additional triethanolamine. The introduction of triethanolamine reduced the grain size and increased the optical band gap of the PbS nanoparticles. The structure, morphology, and optical properties of the obtained films were investigated and compared with respect to the deposition time. X-ray diffraction data were used to obtain the crystallite size, lattice constant, and strain of the films. Atomic force microscopy results show that the roughness and rms-surface slope of the samples obtained from bath-I (PbS-I) were higher than those of bath-II (PbS-II) samples. PbS thin films with high reflectance (~61%) in the near-infrared region, which is important in our solar system, were obtained. The band gap, extinction coefficient, and refractive index of the samples were calculated. Furthermore, Raman analysis was performed and electrical properties of the samples were studied. 相似文献
14.
In this study, undoped and Ga doped ZnO thin films were synthesized by the sol–gel spin coating technique. The effect of Ga contribution on the structural, morphological and optical properties of the ZnO thin films was examined. XRD results showed that all films had a hexagonal wurtzite crystal structure with polycrystalline nature. The intensity of the (002) peak changed with the variable Ga content. The scanning electron microscopy (SEM) results revealed that the surface morphology of the ZnO thin films was affected by Ga content. Moreover, it consisted of nanorods as a result of the increased function of the Ga content. Additionally, the presence of Ga contributions was evaluated by energy dispersive x-ray (EDX) measurements. Although the transparency and the optical band gap of the ZnO thin films increased with Ga contribution, Urbach energy values decreased from 221 meV to 98 meV. In addition, these steepness parameters increased with the increased Ga content from 0% to 6%. The correlation between structural and optical properties was investigated and significant consistency was found. 相似文献
15.
Nanocrystalline Bi2S3 thin films are deposited on tin chloride treated glass substrate from the solution containing bismuth nitrate, triethanolamine (TEA) and thioacetamide (TAM) at a bath temperature 318 K. The prepared films are subsequently annealed at different temperatures for studying the effect of thermal treatment on the structural, surface morphology, optical and electrical properties of the films. The X-ray diffraction studies affirmed that the deposited films are orthorhombic structures with average crystallites size of 14 nm to 28 nm. The scanning electron microscopy (SEM) images revealed that the films comprise of grains of spherical shape of unequal size. It is also observed that the small particles aggregate together to form a larger cluster. The average grain sizes determined from the TEM images are smaller than the crystallites size obtained from the XRD studies. The optical band gap of the films has been estimated to be 2.24–2.05 eV for the as-prepared and annealed films, respectively. The electrical conductivity of the as prepared Bi2S3 films at room temperature is found to be in the order of 10−3 Ω−1 m−1. 相似文献
16.
The growth of monophasic iron sulfide thin films onto glass substrates has been achieved by chemical bath deposition at acidic values of pH. Powder X-ray diffraction (p-XRD) confirms the deposition of tetragonal FeS (mackinawite) with preferred orientation along (001) plane. The crystallite size estimated by Scherrer equation was found to be 14 nm. Scanning electron microscopy (SEM) shows the formation of nanoflakes as base layer and nanoflowers as top layer. Energy Dispersive X-ray (EDX) analysis of the deposited iron sulfide thin films shows the iron to sulfur ratio close to 1:1 confirming the deposition of FeS. UV–vis absorption spectroscopy showed a blueshift due to the nanosize crystallites FeS with a band gap of 1.87 eV. 相似文献
17.
The SnS thin films were synthesized by chemical bath deposition (CBD), dip coating and successive ionic layer adsorption and reaction (SILAR) techniques. In them, the CBD thin films were deposited at two temperatures: ambient and 70 ℃. The energy dispersive analysis of X-rays (EDAX), X-ray diffraction (XRD), Raman spectroscopy, scanning electron microscopy (SEM) and optical spectroscopy techniques were used to characterize the thin films. The electrical transport properties studies on the as-deposited thin films were done by measuring the I-V characteristics, DC electrical resistivity variation with temperature and the room temperature Hall effect. The obtained results are deliberated in this paper. 相似文献
18.
Low cost TiO2/ Sb2(S, Se)3 heterojunction thin film solar cell are prepared successfully by using sol-gel and chemical bath deposition. At first, TiO2 thin film is prepared on the ITO-coated glass substrate by a simple sol-gel and dip-coating method. Subsequently, Sb2(S, Se)3 film is fabricated on TiO2 by selenizing the Sb2S3 film prepared by chemical bath deposition (CBD). The heat-treated process of TiO2 and Sb2(S, Se)3 films has been discussed, respectively. After being heat-treated at 550 °C for TiO2 and 290 °C for Sb2(S, Se)3 films, the photovoltaic devices are completed with the conductive graphite as electrode. The J-V characteristics of TiO2/ Sb2(S, Se)3 solar cell are measured and the open circuit voltage (Voc) of this cell is about 350 mV. 相似文献
19.
Nanostructured CuO thin films were prepared by a simple chemical bath deposition method in the absence and presence of different surfactants. The obtained structures were characterised on the basis of x-ray diffraction (XRD), scanning electron microscopy (SEM), Raman spectroscopy and UV–Vis spectral absorption. XRD and Raman studies pointed to the formation of a pure phase of monoclinic CuO. SEM studies revealed 1-D nanostructures of different orientations and aspect ratios. The presence of surfactants produced more uniform and oriented nanostructures. The samples were absorbing in the UV–Vis region demonstrating their potential application in photothermal systems. All the samples showed photocatalytic activity against methylene blue with different degradation efficiencies. 相似文献
20.
Zirconium oxide films were prepared by the pyrosol process using zirconium acetylacetonate as source material onto clear fused
quartz and (100) silicon at substrate temperatures ranging from 300°C to 575°C. X-ray diffraction (XRD) measurements show
that samples prepared at substrate temperatures lower than 425°C are amorphous. Films deposited at higher temperatures and
short deposition times show a cubic crystalline structure. However, for long deposition times, the samples show monoclinic
crystalline structure. A similar phase transformation is observed on samples deposited at short time if they are annealed
at high temperature. The cubic and monoclinic phases of the corresponding samples were confirmed by infrared (IR) and Raman
spectroscopy, respectively. The ZrO2 films with cubic phase show an almost stoichiometric chemical composition and refractive index values of the order of 2.1
with an energy band gap of 5.47 eV. The current-density electric-field characteristics of metal-oxide semiconductor (MOS)
structures show a small ledge from 2 MV/cm to 4.5 MV/cm, indicating current injection and charge trapping. For higher electric
fields, the current is associated with oxygen ion diffusion through the zirconium oxide film. The dielectric breakdown is
observed at 6 MV/cm, which is a value higher than those observed in the monoclinic and tetragonal phases. 相似文献