首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Titanium dioxide (TiO2) thin films were successfully prepared on quartz substrate by thermal oxidation of sputtered titanium film in air. The structure, composition, morphology and optical properties of oxidized TiO2 films were characterized by Raman spectroscopy, X-ray diffraction, X-ray photoelectron spectroscopy, atomic force microscopy and UV-visible spectroscopy. Meanwhile, the photocatalytic activity of the films was evaluated on the basis of the degradation of methyl orange solution under UV irradiation. Ti films after oxidation present mainly in TiO2 form with a larger amount of adsorbed O2, and oxidation temperature has a strong impact on the crystal structure and properties of the films. A phase transformation of anatase to rutile for oxidized TiO2 films occurred in the temperature range of 700–800 °C. The energy band gap of oxidized TiO2 films decreased first and then increased with annealing temperature. Furthermore, TiO2 film oxidized at 600 °C exhibited the best photocatalytic activity due to suitable crystal phase and size. These results might contribute to the synthesis of metal oxide thin films with expectant structural morphology and properties by thermal oxidation methods.  相似文献   

2.
For the achievement of microactuators based on piezoelectric thin films, a Pt/Ti/Si bottom electrode is widely used. This study presents the experimental results for Ti out-diffusion in Pt and Si for both sputtered Pt/Ti and Pt/TiOx electrodes. These results have been compared before and after a rapid thermal annealing (RTA). The diffusion has been characterized by secondary ion mass spectroscopy (SIMS) analysis using Cs+ as a primary ion source. The Pt orientation has been observed by XRD measurements. Ti thin films (20 nm) have been sputtered in pure Ar whereas TiOx films have been obtained by reactive sputtering in a mixture of Ar/O2 (90/10). Finally, the Pt (100 nm) has been sputtered without vacuum breaking. After RTA (400°C, 30 s, in N2), the Pt film exhibited a (1 1 1) orientation for both Ti and TiOx adhesion films. The roughness of the Pt film measured by AFM with TiOx underlayer was 80% less than that of the Pt/Ti bi-layer. The TiOx film, as shown by SIMS analysis, has drastically reduced the diffusion of Ti in both Pt and Si. This phenomenon is accompanied by a very low Pt roughness. These results are analyzed in terms of diffusion and regrowth mechanisms inside the Pt film.  相似文献   

3.
Rutile phase TiO2 thin films have been synthesized using chemical spray pyrolysis of titanyl acetylacetonate TiAcAc in ethanol at 500 °C. The first part of the paper focuses on the thermal decomposition behavior of the precursor by simultaneous thermogravimetry and differential thermal analysis (TG/DTA) coupled with differential scanning calorimetry (DSC). The second part of the paper focuses on the evolution of TiO2 thin films and their structural transformation with substrate temperature. XRD revealed amorphous TiO2 thin film at low substrate temperatures (<350 °C) and on high substrate temperatures anatase (3.84 g/cm3) or rutile (4.25 g/cm3) crystalline structure was obtained. The lattice constant, grain size, microstrain and the dislocation density of the film were obtained from the peak width. FTIR spectra of both anatase and rutile TiO2 revealed stretching vibration of the Ti–O bond for tetrahedral and octahedral surroundings of the titanium atom. Scanning electron micrograph showed the compactness of the rutile film.  相似文献   

4.
Titanium (Ti) coatings were fabricated on alumina (Al2O3) balls by mechanical coating technique (MCT) with Ti powder. The Ti coatings were then oxidized to titanium dioxide (TiO2) coatings at different temperatures. The oxidation behavior and microstructure evolution of these coatings were investigated. The results showed that the inner and surface layers of the Ti coatings were oxidized simultaneously. When oxidizing at a relatively low temperature for a short time, TiO2/Ti composite coatings were obtained. Increasing the oxidation temperature or time increased the thickness of the TiO2 layer and eventually Ti coatings were totally oxidized to TiO2 coatings. During oxidation, TiO2 needles formed at a lower temperature grew to generate columnar crystals. The photocatalytic activity of these coatings was examined. Compared with TiO2 coatings, the TiO2/Ti composite coatings showed much higher photocatalytic activity. The highest activity was observed for the TiO2/Ti composite coatings prepared by MCT and subsequent oxidation at 1073 K for 15 h and then the thickness of the TiO2 layer was 27 μm.  相似文献   

5.
Tin doped Zinc oxide/Titanium oxide nanocomposite (TZO/TiO2) was prepared by two methods: TiO2 nanotube (Nt) arrays are grown by anodic oxidation of titanium foil and TZO films was deposited on the TiO2 Nt obtained by hydrothermal process. The morphological characteristics and structures of ZnO/TiO2 and TZO/TiO2 were examined by (scanning elecron miscroscopy) SEM, (X rays diffraction) XRD and (energy dispersive spectroscopy) EDS analysis. The diameter of TiO2 Nts was ranged from 40 nm to 90 nm with wall thicknesses of approximately 10 nm. The anatase structure of Titania, the hexagonal Zincite crystal of zinc oxide and tetragonal structure of tin oxide were identified by XRD. EDS analysis revealed the presence of O, Zn, Ti and Sn elements in the obtained deposits.These nanocomposites have been used as active layer in hydrogen gas sensing application. The hydrogen sensing characteristics of the sensor was analyzed by measuring the sensor responses in the temperature of 100 °C and 160 °C. The highest gas response is approximately 1.48 at 160 °C.The sensing mechanism of the nanocomposite sensor was explained in terms of H2 chimisorption on the highly active nanotube surface.  相似文献   

6.
This work uses ultrasonic spray pyrolysis deposition to grow the TiO2 film on a Si substrate. The TiO2 film was annealed at 800 °C for 2 h to form rutile phase. X-ray diffraction, Raman spectrum, X-ray photoelectron spectroscopy were used to characterized rutile phase TiO2. The optical characteristics like refractive index, extinction coefficient and absorption coefficient were measured. The rutile TiO2-based metal-semiconductor-metal ultraviolet photodetector was fabricated and investigated, including current-voltage characteristic, photoresponsivity, external quantum efficiency, response time, noise equivalent power, and detectivity.  相似文献   

7.
In this paper, thickness dependent structural, surface morphological, optical and electrical properties of RF magnetron sputtered CuIn0.8Ga0.2Se2 (CIGS) thin films were studied using X-ray diffraction (XRD), Transmission electron microscopy (TEM), Field emission scanning electron microscopy (FE-SEM), Atomic force microscopy (AFM), UV–vis–NIR spectrophotometer and Keithley electrical measurement unit. The peak intensity along (112) plane as well as crystallite size was found to increase with thickness. However, for higher film thickness >1.16 μm, crystallinity reduced due to higher % of Cu content. TEM analysis confirmed pollycrysallinity as well as chalcopyrite phase of deposited films. The band gap was found to decrease with increase in thickness yielding a minimum value of 1.12 eV for film thickness 1.70 μm. The IV characteristics showed the ohmic behavior of metal semiconductor contact with higher conductivity for film thickness 1.16 μm.  相似文献   

8.
About 480 nm thick titanium oxide (TiO2) thin films have been deposited by electron beam evaporation followed by annealing in air at 300–600 °C with a step of 100 °C for a period of 2 h. Optical, electrical and structural properties are studied as a function of annealing temperature. All the films are crystalline (having tetragonal anatase structure) with small amount of amorphous phase. Crystallinity of the films improves with annealing at elevated temperatures. XRD and FESEM results suggest that the films are composed of nanoparticles of 25–35 nm. Raman analysis and optical measurements suggest quantum confinement effects since Raman peaks of the as-deposited films are blue-shifted as compared to those for bulk TiO2 Optical band gap energy of the as-deposited TiO2 film is 3.24 eV, which decreases to about 3.09 eV after annealing at 600 °C. Refractive index of the as-deposited TiO2 film is 2.26, which increases to about 2.32 after annealing at 600 °C. However the films annealed at 500 °C present peculiar behavior as their band gap increases to the highest value of 3.27 eV whereas refractive index, RMS roughness and dc-resistance illustrate a drop as compared to all other films. Illumination to sunlight decreases the dc-resistance of the as-deposited and annealed films as compared to dark measurements possibly due to charge carrier enhancement by photon absorption.  相似文献   

9.
Four sputtered oxide films (SiO2, Al2O3, Y2O3 and TiO2) along with their passivating amorphous InGaZnO thin film transistors (a-IGZO TFTs) were comparatively studied in this paper. The device passivated by an Al2O3 thin film showed both satisfactory performance (μFE=5.3 cm2/V s, Ion/Ioff>107) and stability, as was probably related to smooth surface of Al2O3 thin films. Although the performance of the a-IGZO TFTs with a TiO2 passivation layer was also good enough (μFE=3.5 cm2/V s, Ion/Ioff>107), apparent Vth shift occurred in positive bias-stress tests due to the abnormal interface state between IGZO and TiO2 thin films. Sputtered Y2O3 was proved no potential for passivation layers of a-IGZO TFTs in this study. Despite unsatisfactory performance of the corresponding a-IGZO TFT devices, sputtered SiO2 passivation layer might still be preferred for its high deposition rate and excellent transparency which benefit the mass production of flat panel displays, especially active-matrix liquid crystal displays.  相似文献   

10.
Aluminum nitride (AlN) films have been grown in pure N2 plasma using cathodic arc ion deposition process. The films were prepared at different substrate bias voltages and temperatures. The aim was to investigate their influence on the Al macro-particles, structural and optical properties of deposited films. X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), Raman spectroscopy, Scanning electron microscope (SEM) and Rutherford backscattering spectrometry (RBS) were employed to characterize AlN thin films. XRD patterns indicated the formation of polycrystalline (hexagonal) films with preferential orientation of (002), which is suppressed at higher substrate bias voltage. FTIR and Raman spectroscopic analysis were used to assess the nature of chemical bonding and vibrational phonon modes of AlN thin films respectively. FTIR spectra depicted a dominant peak around 850 cm?1 corresponding to the longitudinal optical (LO) mode of vibration. A shift in this LO mode peak towards higher wavenumbers was observed with the increase of substrate bias voltage and temperature, showing the upsurge of nitrogen concentration in the deposited film. Raman spectra illustrated a peak at 650 cm?1 corresponding to E2 (high) phonon mode depicting the c-axis oriented (perpendicular to substrate) AlN film. SEM analysis showed the AlN film deposited at higher substrate bias voltage contains fewer amounts of Al macro-particles.  相似文献   

11.
Polyaniline (PANI)/TiO2 nanocomposite samples with various dopant percentages of TiO2 were synthesized at room temperature using a chemical oxidative method. The samples were characterized by ultraviolet-visible spectrometer, Fourier transform infrared (FTIR) spectrometer, X-ray diffraction (XRD), scanning electron microscopy (SEM), EDAX and conductivity measurements. Incorporation of TiO2 nanoparticles caused a slight red shift at 310 nm in the absorption spectra due to the interactions between the conjugated polymer chains and TiO2 nanoparticles with π–π? transition. FTIR confirmed the presence of TiO2 in the molecular structure. In PANI/TiO2 composites, two additional bands at 1623 cm?1 and 1105 cm?1 assigned to Ti–O and Ti–OC stretching modes were present. It can be concluded that Ti organic compounds are formed with an alignment structure of TiO2 particles. XRD patterns revealed that, as the TiO2 percentage was increased, the amorphous nature disappeared and the composites became more strongly oriented along the (1 1 0) direction, which showed the tetragonal structure of nanocrystalline TiO2. SEM studies revealed the formation of uniform granular morphology with average grain size of 200 nm for (50%) PANI/TiO2 nanocomposite samples.  相似文献   

12.
The lead magnesium niobate–lead titanate (PMN–PT) thin films with and without the TiO2 seed layer were prepared by a pulsed laser deposition (PLD) deposited on Pt/Ti/SiO2/Si substrates. The films were treated by two-step annealing and normal annealing with rapid thermal annealing (RTA). The effects of two-step annealing and the TiO2 seed layer on the phase composition of PMN–PT films were studied. The results show that the PMN–PT film with TiO2 seed layer can gain a pure perovskite phase with a high (1 0 0) preferential orientation after the two-step annealing technique.  相似文献   

13.
In this research, TiO2 thin films prepared via thermal oxidation of Ti layers were deposited by RF-magnetron sputtering method at three different sputtering powers. The effects of sputtering power on structure, surface and optical properties of TiO2 thin films grown on glass substrate were studied by X-ray diffraction (XRD), atomic force microscopic (AFM) and UV–visible spectrophotometer. The results reveal that, the structure of layers is changed from amorphous to crystalline at anatase phase by thermal oxidation of deposited Ti layers and rutile phase is formed when sputtering power is increased. The optical parameters: absorption coefficient, dielectric constants, extinction coefficient, refractive index, optical conductivity and dissipation factor are decreased with increase in sputtering power, but increase in optical band gap is observed. The roughness of thin films surface is affected by changes in sputtering power which is obtained by AFM images.  相似文献   

14.
Engineering and controlling the bandgap of semiconducting metal oxide (TiO2) to enhance photoactivity under visible light is challenging. Impact of the changing CdS thickness (50–150 nm) on the structure and optical properties of the CdS/TiO2 heterostructure films (HSFs) which fabricated by pulsed laser deposition (PLD) was observed. XRD, FE-SEM, AFM, UV–vis and PL spectroscopy measurements were utilized to characterize structural and optical behaviors of the films. XRD measurement shows gradual increments of the lattice constants of the films with the increase of CdS thickness. The mean values of the calculated lattice constants and cell volume (V) were a=b=0.3785 nm, c=0.9475 nm and V=13.58 nm3 respectively. The average of crystallite sizes estimated for TiO2 and CdS/TiO2 at various CdS thickness is 12.20, 13.49, 24.24 and 43.10 nm. FESEM images prove the high quality nanocrystalline nature of the films without cracks and dislocation. The root means square roughness of the films was increased with the increase of CdS thickness as showed by AFM images. UV–vis measurement reveals an improvement in the optical absorbance of HSFs in the range of 380–550 nm due to presence of CdS. Interestingly, the PL intensity was enhanced by a factor of nineteen compare to pure TiO2 attributed to the charge carrier recombination in the band gap. The current results suggest that possibility to improve the optical and structural properties of the TiO2 films and also it possible to fabricate high quality CdS/TiO2 HSFs by variation of the CdS thickness.  相似文献   

15.
High quality BaWO4 thin films are successfully deposited on quartz substrate for a duration of 30 min using pulsed laser ablation technique and using a laser radiation of wavelength 355 nm and the effect of thermal annealing on the structural and optical properties is studied by using techniques like X-ray diffraction (XRD), scanning electron microscopy (SEM), atomic force microscopy, micro-Raman, FTIR and UV–visible spectroscopy. All the films show monoclinic crystalline structure with (2 0 2) plane as the preferred orientation of crystal growth. From the XRD analysis it is found that the optimum annealing temperature for better crystallization of the BaWO4 film is 700 °C and there is no phase change observed with annealing temperature. The presence of the characteristic bands for the BaWO4 in the Raman spectra of the films suggests the formation of BaWO4 crystalline phase in all the films. SEM and AFM analyses show that as the annealing temperature increases the connectivity between individual grains increases and shows an ordered packing. The geometrical optimization and energy calculation of the title compound were done using the Gaussian 09 software package and the calculations were carried out using the CAM-B3LYP functional combined with standard Lanl2Dz basis set. The thickness of the films was calculated using lateral SEM images and also from optical transmission spectral data using PUMA software.  相似文献   

16.
Copper (Cu) doped zinc oxide (ZnO) thin films were successfully prepared by a simple sol-gel spin coating technique. The effect of Cu doping on the structural, morphology, compositional, microstructural, optical, electrical and H2S gas sensing properties of the films were investigated by using XRD, FESEM, EDS, FTIR, XPS, Raman, HRTEM, and UV–vis techniques. XRD analysis shows that the films are nanocrystalline zinc oxide with the hexagonal wurtzite structure and FESEM result shows a porous structured morphology. The gas response of Cu-doped ZnO thin films was measured by the variation in the electrical resistance of the film, in the absence and presence of H2S gas. The gas response in relation to operating temperature, Cu doping concentration, and the H2S gas concentration has been systematically investigated. The maximum H2S gas response was achieved for 3 at% Cu-doped ZnO thin film for 50 ppm gas concentration, at 250 °C operating temperature.  相似文献   

17.
Although silicide oxidation was studied 20 years ago, the interest of obtaining a robust process for new application appears significant today. Indeed, for the new architectural development process are required dense and narrow spaces. This paper focuses to bury a silicide layer under a protective layer such as silica in order to keep constant the physical and electrical properties of silicide after oxidation. Earlier works show the possibility to oxidize preferably the silicon (Si) in metal contained silicide rather than a pure crystalline Si at high temperatures. Thus, we first tried to reproduce and study these conditions and once acquired, targeted to decrease the oxidation temperature in order to fit with industrial requirements. Titanium (Ti) and Nickel (Ni) are chosen for their metallurgical interest and their integration capability in devices. Thus, four different group/phases (TiSi, TiSi2, Ni2Si, NiSi) of silicide were targeted by adjusting the temperature. In situ X-ray diffraction (XRD), photoelectron spectroscopy and sheet resistance (four point probe) measurements were carried out simultaneously before and after oxidation of silicide to characterize the phase and chemical composition. After silicide formation last three phases (TiSi2, Ni2Si, NiSi) were confirmed by XRD and G1(Ti/Si) was unknown, where only for NiSi was observed the low sheet resistance (≈7.3 Ω/□) and resistivity (18 μΩ·cm). After (dry, wet and plasma) oxidation, the phases of TiSi2 and Ni2Si changed and only NiSi was observed the constant phase, even pure SiO2 was noted on NiSi after wet oxidation.  相似文献   

18.
Novel copper-doped titanium dioxide (Cu-doped TiO2) thin films on silver (Ag) substrates with different thicknesses were prepared by sol–gel and magnetron sputtering methods. The influences of the Ag substrate thickness on the morphology and performance of the films were investigated by X-ray diffraction, scanning electron microscopy, X-ray photoelectron spectroscopy, photoluminescence spectroscopy, UV–visible spectroscopy, and photocatalytic degradation testing with methylene blue aqueous solution under visible light irradiation. The results indicated that Ag substrates with an optimal thickness of 30 nm not only maintained the tiny nanocrystals but also greatly improved dispersion of the nanoparticles on the surface of the nanofilms. Furthermore, during the calcination process, part of the Ag atoms diffused from the substrates into the Cu–TiO2 films and substituted for the Cu ions to form Ag–TiO2. A proper Ag substrate thickness (30 nm) greatly improved the photocatalytic properties of TiO2 with photocatalytic efficiency, reaching approximately 86% in 300 minutes under visible light irradiation. However, an excess of Ag substrate not only led to the Cu ion separating out in the form of CuO but also resulted in the agglomeration of TiO2 particles on the surface, which were detrimental to photocatalytic activities.  相似文献   

19.
Solar cells consist of n-Si wafer and p-Si polycrystalline thin film, which was solely fabricated by magnetron sputtering, and aluminium induced crystallization, are presented in this paper. Firstly, the material and electrical properties of the fabricated p-Si thin films including the crystallization ratio, grain size, morphology, carrier density and mobility were studied by Raman spectroscopy, X-ray diffraction (XRD), scanning electron microscopy and Hall Effect measurement, respectively. The p-Si polycrystalline thin film formed under optimal process conditions had the crystallization ratio of ~ 99% and the grain size of ~ 64.6 nm, determined from the data of Raman spectroscopy and XRD. The hole concentration in the fabricated p-Si polycrystalline thin films was mainly in the order of 1017 cm−3 to 1019 cm−3, and their corresponding mobility values ranged from 15 cm2/V s to 65 cm2/V s. Then solar cells with the device structure of Al electrode/n-Si wafer/p-Si thin film/Al electrode were fabricated, and their electrical properties were measured both under dark and illumination conditions by the semiconductor performance tester and solar simulator. The measured J-V curves under dark condition confirmed the creation of a p-n junction with the ideality factor of 1.55, rectification ratio of 410 at ± 1 V, and the reverse saturation current of 246 nA/cm2. The efficiency of 2.19%, with an open circuit voltage of 448 mV and a short circuit current density of 11.2 mA/cm2, was achieved under AM1.5G standard illuminations.  相似文献   

20.
A new technique to grow single phase Cu2ZnSnS4 (CZTS) thin films for solar cells applications using a chemical route is presented; this consist in sequential deposition of Cu2SnS3 (CTS) and ZnS thin films followed by annealing at 550 °C in nitrogen atmosphere, where the CTS compound is prepared in one step process by simultaneous precipitation of Cu2S and SnS2 performed by diffusion membranes assisted CBD (chemical bath deposition) technique and ZnS by conventional CBD technique.Measurements of X-ray diffraction (XRD), Raman spectroscopy and scanning electron microscopy (SEM) were used to identify the phases present in the CTS and CZTS films as well as to study their structural and morphological properties. Further, the oxidation states and the chemical composition homogeneity in the volume were studied by X-ray photoelectron spectroscopy (XPS) analysis. Oxidation states and results regarding structural and morphological characterization of CZTS films prepared using the novel technique are compared with those results obtained from single phase CZTS films prepared by sequential evaporation of metallic precursors in presence of elemental sulfur. XRD and Raman spectroscopy studies were used to verify that the CZTS films prepared by the novel method do not present secondary phases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号