共查询到7条相似文献,搜索用时 0 毫秒
1.
Bon Van Nguyen Kyu-Yeol Park Young-Sang Na Seon-Cheon Son Jong-Hoon Lee 《Metals and Materials International》2007,13(5):433-437
The amorphous alloy Zr62Cu17Ni13Al8 exhibits a supercooled liquid state over a wide temperature range under high temperatures. In this present paper, the authors
studied the micro-forming ability of the alloy by compressing specimens under a miniature pattern mold with a micro-gear shape.
Micro-compressive formation is a formation method in which the surface of specimens of the Zr62Cu17Ni13Al8 amorphous alloy is compressed under conditions of dead loads and high temperatures and maintained for a given period for
the fabrication of miniature patterns with a micro-gear shape. All the experiments were carried out under a vacuum environment
to prevent the specimens from suffering deleterious effects, such as air traps in the miniature patterns and oxidation at
the surface of the Zr62Cu17Ni13Al8 amorphous alloy. The characteristics of micro-compressive formation were investigated at temperatures higher than the glass
transition temperature with different experimental parameters of loads and times. In addition, the micro-forming characteristics
of the gear-like shape were investigated by means of scanning electron microscopes and a 3-D surface profiler system. 相似文献
2.
Chip formation, cutting forces, and tool wear in turning of Zr-based bulk metallic glass 总被引:2,自引:3,他引:2
Mustafa Bakkal Albert J. Shih Ronald O. Scattergood 《International Journal of Machine Tools and Manufacture》2004,44(9):915-925
The chip light emission and morphology, cutting forces, surface roughness, and tool wear in turning of Zr-based bulk metallic glass (BMG) material are investigated. Machining results are compared with those of aluminum 6061-T6 and AISI 304 stainless steel under the same cutting conditions. This study demonstrates that the high cutting speeds and tools with low thermal conductivity and rake angle activate the light emission and chip oxidation in BMG machining. For the BMG chip without light emission, serrated chip formation with adiabatic shear band and void formation is observed. The cutting force analysis further correlates the chip oxidation and specific cutting energy and shows the significant reduction of cutting forces for machining BMG at high cutting speeds. The machined surface of BMG has better surface roughness than that of the other two work materials. Some tool wear features, including the welding of chip to the tool tip and chipping of the polycrystalline cubic boron nitride (PCBN) tool edge, are reported for turning of BMG. This study concludes that BMG can be machined with good surface roughness using conventional cutting tools. 相似文献
3.
Preparation, thermal stability, and magnetic properties of Fe---Co---Zr---Mo---W---B bulk metallic glass 总被引:1,自引:0,他引:1
D.Y. Liu W.S. Sun A.M. Wang H.F. Zhang Z.Q. Hu 《Journal of Alloys and Compounds》2004,370(1-2):249-253
A bulk metallic glass (BMG) cylinder of Fe60Co8Zr10Mo5W2B15 with a diameter of 1.5 mm was prepared by copper mould casting of industrial raw materials. The amorphous state and the crystallization behavior were investigated by X-ray diffraction (XRD). The thermal stability parameters, such as glass transition temperature (Tg), crystallization temperature (Tx), supercooled liquid region (ΔTx) between Tg and Tx, and reduced glass transition temperature Trg (Tg/Tm) were measured by differential scanning calorimetry (DSC) to be 891, 950, 59 K, and 0.62, respectively. The crystallization process took place through a single stage, and involved crystallization of the phases -Fe, ZrFe2, Fe3B, MoB2, Mo2FeB2, and an unknown phase, as determined by X-ray analysis of the sample annealed for 1.5 ks at 1023 K, 50 K above the DSC peak temperature of crystallization. Mössbauer spectroscopy was studied for this alloy. The spectra exhibit a broadened and asymmetric doublet-like structure that indicated paramagnetic behavior and a fully amorphous structure. -Fe was found in the amorphous matrix for a cylinder with a diameter of 2.5 mm. The success of synthesis of the Fe-based bulk metallic glass from industrial materials is important for the future progress in research and practical application of new bulk metallic glasses. 相似文献
4.
The glass forming ability of Gd-Co-A1 ternary alloy systems with a composition ranging from 50% to 70% (molar fraction) for Gd and from 5% to 40% (molar fraction) for AI were investigated by copper mold casting and Gd60Co25Al15 bulk glass alloy cylinders with the maximum diameter of 5 mm were obtained. The reduced glass transformation temperature (TG/Tm) and the distance of supercooling region ATx are 0.616 and 45 K, respectively for this Gd-Co-A1 alloy. The compressive fracture strength (σf) and elastic modulus (E) of Gd-Co-A1 glassy alloys are 1 170-1 380 MPa and 59-70 GPa, respectively. The Gd-AI-Co bulk glassy alloys with high glass forming ability and good mechanical properties are promising for the future development as a new type function materials. 相似文献
5.
Kyuhong Lee Kwangjun Euh Sunghak Lee Nack J. Kim 《Journal of Alloys and Compounds》2005,400(1-2):171-177
Zr-based amorphous surface alloyed materials were fabricated by high-energy electron beam irradiation in this study. A mixture of Zr-based amorphous powders and LiF + MgF2 flux was deposited on a pure copper substrate, and then an electron beam was directed on this powder mixture to fabricate a one-layered surface alloyed material. A two-layered surface alloyed material was also fabricated by irradiating electron beam again onto the powder mixture deposited on the one-layered surface alloyed material. The microstructural analysis results indicated that a number of coarse crystalline phase particles were formed in the one-layered surface alloyed layer, whereas a small amount of fine and hard crystalline particles were homogeneously distributed in the amorphous matrix of the two-layered surface alloyed layer. Owing to these fine and hard crystalline particles, the hardness and wear resistance of the two-layered surface alloyed layer improved over the one-layered surface alloyed layer or other kinds of surface alloyed layers. The thermal conductivity of the two-layered surface alloyed layer was much lower than that of titanium-alloy-based or stainless-steel-based surface alloyed layers. These findings suggested the possibility of applying Zr-based amorphous surface alloyed materials to high wear-resistant thermal barrier coatings or parts. 相似文献
6.
The Mg97Y2Zn1 alloy processed by equal channel angular pressing (ECAP) has been investigated. It was found that the blocks of secondary phase were broken into uniform distributed sections after ECAP. The Mg97Y2Zn1 alloy processed by ECAP obtained ultrafine grains and exhibits excellent mechanical properties. The average grain size of about 330 nm, yield strength (YS) of 400.3 MPa and ultimate tensile strength (UTS) of 450.0 MPa were obtained by two-step ECAP of 4 passes at 623 K and 2 passes at 603 K. The long-period stacking (LPS) structures contribute to the formation of ultrafine grains in ECAP processed Mg97Y2Zn1 alloy. The results demonstrate that ECAP instead of rapid solidified powder metallurgy (RS/PM) can refine grain size and enhance the strength of Mg97Y2Zn1 alloy. It was also found that the elongation of alloy is decreased with increasing pass number. It was found that cracks were preferentially initiated and propagated in the interior of X-phase during the process of ECAP. 相似文献
7.
Cu46Zr47-xAl7Mx(M = Ce,Pr,Tb,and Gd) bulk metallic glassy(BMG) alloys were prepared by copper-mold vacuum suction casting.The effects of rare-earth elements on the glass-forming ability(GFA),thermal stability,and mechanical properties of Cu46Zr47-xAl7Mx were investigated.The GFA of Cu46Zr47-xAl7Mx(M = Ce,Pr) alloys is dependent on the content of Ce and Pr,and the optimal content is 4.at %.Cu46Zr47-xAl7Tbx(x = 2,4,and 5) amorphous alloys with a diameter of 5 mm can be prepared.The GFA of Cu46Zr47-xAl7Gdx(x = 2,4,and 5) increases with increasing Gd.Tx and Tp of all decrease.Tg is dependent on the rare-earth element and its content.△Tx for most of these alloys decreases except the Cu46Zr42Al7Gd5 alloy.The activation energies △Eg,△Ex,and △Ep for the Cu46Zr42Al7Gd5 BMG alloy with Kissinger equations are 340.7,211.3,and 211.3 kJ/mol,respectively.These values with Ozawa equations are 334.8,210.3,and 210.3 kJ/mol,respectively.The Cu46Zr45Al7Tb2 alloy presents the highest microhardness,Hv 590,while the Cu46Zr43Al7Pr4 alloy presents the least,Hv 479.The compressive strength(σc.f.) of the Cu46Zr43Al7Gd4 BMG alloy is higher than that of the Cu46Zr43Al7Tb4 BMG alloy. 相似文献