首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 187 毫秒
1.
针对中间层通道特征相关性利用率低、低分辨率图像和高分辨率图像函数映射空间非线性的问题,提出了一种基于高效二阶注意力机制的对偶回归网络(ESADRNet)。该网络将重建任务分为两个回归网络:原始回归网络和对偶回归网络。原始回归网络采用FReLU为激活函数的下采样层对图像进行更高效的空间上下文特征提取;基于多级跳跃连接残差块(MLSCR)和高效二阶通道注意力模块(ESOCA)构成的多级跳跃连接残差注意力模块(MLSCRAG)、共享源跳跃连接(SSC)和亚像素卷积构建渐进式上采样网络,使网络专注于更具辨别性的特征表示,具有更强大的特征表达和特征相关学习能力;利用对偶回归网络约束映射空间,寻找最优重建函数。在Set5、Set14、BSD100和Urban109数据集上经过对比实验证明,该网络在客观定量指标和主观视觉方面均优于其他对比方法。  相似文献   

2.
针对单幅图像超分辨率(single image super-resolution, SISR)重建算法存在低分辨率图像(LR)到高分辨率图像(HR)的映射学习具有不适定性,深层神经网络收敛慢且缺乏对高频信息的学习能力以及在深层神经网络传播过程中图像特征信息存在丢失的问题.本文提出了基于对偶回归和残差注意力机制的图像超分辨率重建网络.首先,通过对偶回归约束映射空间.其次,融合通道和空间注意力机制构造了残差注意力模块(RCSAB),加快模型收敛速度的同时,有效增强了对高频信息的学习.最后,融入密集特征融合模块,增强了特征信息流动性.在Set5、Set14、BSD100、Urban100四种基准数据集上与目前主流的单幅图像超分辨率算法进行对比,实验结果表明该方法无论是在客观质量评价指标还是主观视觉效果均优于对比算法.  相似文献   

3.
图像超分辨(SR)方法通常利用深度神经网络学习从低分辨率图像(Low Resolution, LR)到高分辨率图像(High Resolution, HR)进行非线性映射重建。但是从LR图像到HR图像的映射往往是一个不适定问题,即存在无限的HR图像可以降采样到同一LR图像。为了解决该问题,本文对LR图像引入附加约束来减少可能的函数空间,并提出了基于双回归网络—双重残差注意力网络(Dual Residual Attention Network, DRAN)的图像超分辨率重构方法(DRAN-SR)。DRAN模型中原始网络负责将低分辨率(LR)图像重构为高分辨率(HR)图像,对偶回归网络负责估计下采样核和重构LR图像,从而形成一个闭环来提供额外的监督效果。实验结果表明,DRAN-SR比现有方法具有更好的峰值信噪比(Peak Signal to Noise Ratio, PSNR)和结构相似性(Structural SIMilarity, SSIM)。  相似文献   

4.
现有基于卷积神经网络的单图像超分辨率模型存在三个限制。理论上存在无限的HR图像,可以下采样到相同的LR图像,可能的函数空间非常大。因为现实世界潜在的下采样方法是未知的,使用特定方法配对的数据训练的模型在实际应用中泛化能力差,产生适应性问题。忽视残差分支的高频层次特征。针对上述问题,提出双重回归方案。除了学习从LR到HR图像的原始回归映射之外,额外学习一个对偶回归映射来估计下采样核并重建LR图像,形成一个闭环提供额外的监督,并在残差结构上引入了傅里叶变换,增强模型对高频信息的表达能力。相比其他先进模型以更少的参数重建HR图像,且拥有丰富的高频纹理细节。  相似文献   

5.
目的 针对以往基于深度学习的图像超分辨率重建方法单纯加深网络、上采样信息损失和高频信息重建困难等问题,提出一种基于多尺度特征复用混合注意力网络模型用于图像的超分辨率重建。方法 网络主要由预处理模块、多尺度特征复用混合注意力模块、上采样模块、补偿重建模块和重建模块5部分组成。第1部分是预处理模块,该模块使用一个卷积层来提取浅层特征和扩张特征图的通道数。第2部分是多尺度特征复用混合注意力模块,该模块加入了多路网路、混合注意力机制和长短跳连接,以此来进一步扩大特征图的感受野、提高多尺度特征的复用和加强高频信息的重建。第3部分是上采样模块,该模块使用亚像素方法将特征图上采样到目标图像尺寸。第4部分是补偿重建模块,该模块由卷积层和混合注意力机制组成,用来对经过上采样的特征图进行特征补偿和稳定模型训练。第5部分是重建模块,该模块由一个卷积层组成,用来将特征图的通道数恢复至原来数量,以此得到重建后的高分辨率图像。结果 在同等规模模型的比较中,以峰值信噪比(peak signal-to-noise ratio,PSNR)和结构相似度(structural similarity index measure,SSIM)作为评价指标来评价算法性能,在Set5、Set14、BSD100(Berkeley segmentation dataset)和Urban100的基准测试集上进行测试。当缩放尺度因子为3时,各测试集上的PSNR/SSIM依次为34.40 dB/0.927 3,30.35 dB/0.842 7,29.11 dB/0.805 2和28.23 dB/0.854 0,相比其他模型有一定提升。结论 量化和视觉的实验结果表明,本文模型重建得到的高分辨率图像不仅在重建边缘和纹理信息有很好的改善,而且在PSNR和SSIM客观评价指标上也有一定的提高。  相似文献   

6.
图像超分辨率在视频修复等方面具有广泛应用。针对基于深度学习的图像超分辨率重建(FSRCNN)方法存在的问题,提出基于多尺度联合网络的图像超分辨率重建方法。首先,通过构建基于多尺度网络的特征采样模型来提取低分辨率(LR)图像的特征;其次,通过特征融合和构造亚像素卷积层的方法对特征进行增强;最后,定义基于均方误差MSE和峰值信噪比PSNR的联合损失函数。在Set5、Set14和BSD100数据集上进行了对比实验,实验结果表明,该方法获得了相对较好的结果。最后针对低分辨率影视作品《西游记》和《红楼梦》进行了高分辨率修复,取得了一定的效果。  相似文献   

7.
欧阳宁  韦羽  林乐平 《计算机应用》2020,40(10):3041-3047
针对图像超分辨率重建模型需要大量参数去捕获低分辨率(LR)图像和高分辨率(HR)图像之间的统计关系,以及使用L1L2损失优化的网络模型不能有效恢复图像高频细节等问题,提出一种结合感知边缘约束与多尺度融合网络的图像超分辨率重建方法。该方法基于由粗到细的思想,设计了一种两阶段的网络模型。第一阶段通过卷积神经网络(CNN)提取图像特征,并将图像特征上采样至HR大小,得到粗糙特征;第二阶段使用多尺度估计将低维统计模型逐步逼近高维统计模型,将第一阶段输出的粗糙特征作为输入来提取图像多尺度特征,并通过注意力融合模块逐步融合不同尺度特征,以精细化第一阶段提取的特征。同时,该方法引入一种更丰富的卷积特征用于边缘检测,并将其作为感知边缘约束来优化网络,以更好地恢复图像高频细节。在Set5、Set14和BSDS100等基准数据集上进行实验,结果表明与现有的基于CNN的超分辨率重建方法相比,该方法不但能够重建出更为清晰的边缘和纹理,而且在×3和×4放大因子下的峰值信噪比(PSNR)和结构相似度(SSIM)都取得了一定的提升。  相似文献   

8.
欧阳宁  韦羽  林乐平 《计算机应用》2005,40(10):3041-3047
针对图像超分辨率重建模型需要大量参数去捕获低分辨率(LR)图像和高分辨率(HR)图像之间的统计关系,以及使用L1L2损失优化的网络模型不能有效恢复图像高频细节等问题,提出一种结合感知边缘约束与多尺度融合网络的图像超分辨率重建方法。该方法基于由粗到细的思想,设计了一种两阶段的网络模型。第一阶段通过卷积神经网络(CNN)提取图像特征,并将图像特征上采样至HR大小,得到粗糙特征;第二阶段使用多尺度估计将低维统计模型逐步逼近高维统计模型,将第一阶段输出的粗糙特征作为输入来提取图像多尺度特征,并通过注意力融合模块逐步融合不同尺度特征,以精细化第一阶段提取的特征。同时,该方法引入一种更丰富的卷积特征用于边缘检测,并将其作为感知边缘约束来优化网络,以更好地恢复图像高频细节。在Set5、Set14和BSDS100等基准数据集上进行实验,结果表明与现有的基于CNN的超分辨率重建方法相比,该方法不但能够重建出更为清晰的边缘和纹理,而且在×3和×4放大因子下的峰值信噪比(PSNR)和结构相似度(SSIM)都取得了一定的提升。  相似文献   

9.
针对传统单幅图像超分辨率深度学习方法将不同尺度低分辨率视作独立任务的问题,提出一种以残差通道注意力模块作为特征提取,元上采样模块作为放大模块的超分辨率网络。残差通道注意力机制可以滤除冗余低频信息减少网络深度,使元上采样模块更好地训练不同尺度低分辨率图像特征间的关系,实现任意尺度的超分辨率网络。为了验证该方法有效性,在Set5、Set14、Urban100等公共数据集上实验。实验结果表明,该方法在整数与非整数倍尺度都能很好地恢复高分辨率图像。  相似文献   

10.
目的 通道注意力机制在图像超分辨率中已经得到了广泛应用,但是当前多数算法只能在通道层面选择感兴趣的特征图而忽略了空间层面的信息,使得特征图中局部空间层面上的信息不能合理利用。针对此问题,提出了区域级通道注意力下的图像超分辨率算法。方法 设计了非局部残差密集网络作为网络的主体结构,包括非局部模块和残差密集注意力模块。非局部模块提取非局部相似信息并传到后续网络中,残差密集注意力模块在残差密集块结构的基础上添加了区域级通道注意力机制,可以给不同空间区域上的通道分配不同的注意力,使空间上的信息也能得到充分利用。同时针对当前普遍使用的L1和L2损失函数容易造成生成结果平滑的问题,提出了高频关注损失,该损失函数提高了图像高频细节位置上损失的权重,从而在后期微调过程中使网络更好地关注到图像的高频细节部分。结果 在4个标准测试集Set5、Set14、BSD100(Berkeley segmentation dataset)和Urban100上进行4倍放大实验,相比较于插值方法和SRCNN(image super-resolution using deep convolutional networks)算法,本文方法的PSNR(peak signal to noise ratio)均值分别提升约3.15 dB和1.58 dB。结论 区域级通道注意力下的图像超分辨率算法通过使用区域级通道注意力机制自适应调整网络对不同空间区域上通道的关注程度,同时结合高频关注损失加强对图像高频细节部分的关注程度,使生成的高分辨率图像具有更好的视觉效果。  相似文献   

11.
梁敏  王昊榕  张瑶  李杰 《计算机应用》2021,41(5):1438-1444
针对深层网络架构的图像超分辨率重建任务中存在网络参数多、计算复杂度高等问题,提出了一种基于加速残差网络的图像超分辨率重建方法。首先,构建一个残差网络对低分辨率图像与高分辨率图像之间的高频残差信息进行重建,以减少冗余信息的深层网络传输过程,提高重建效率;然后,通过特征收缩层对提取的低分辨率特征图进行降维,从而以较少的网络参数实现快速映射;之后,对高分辨率特征图通过特征扩展层进行升维,从而以较丰富的信息重建高频残差信息;最后,将残差与低分辨率图像求和得到重建的高分辨率图像。实验结果表明,该方法取得的峰值信噪比(PSNR)及结构相似性(SSIM)均值结果较基于卷积神经网络的图像超分辨率(SRCNN)取得的结果分别提升了0.57 dB和0.013 3,较基于中间层监督卷积神经网络的图像超分辨率重建(ISCNN)取得的结果分别提升了0.45 dB和0.006 7;在重建速度方面,以数据集Urban100为例,较现有方法提高了1.5~42倍。此外,将该方法应用于运动模糊图像的超分辨率重建时,获得了优于超深卷积神经网络的图像超分辨率(VDSR)的性能。所提方法以较少的网络参数快速获得较好的重建质量,并且为图像超分辨率重建提供了新的思路。  相似文献   

12.
目的 近几年应用在单幅图像超分辨率重建上的深度学习算法都是使用单种尺度的卷积核提取低分辨率图像的特征信息,这样很容易造成细节信息的遗漏。另外,为了获得更好的图像超分辨率重建效果,网络模型也不断被加深,伴随而来的梯度消失问题会使得训练时间延长,难度加大。针对当前存在的超分辨率重建中的问题,本文结合GoogleNet思想、残差网络思想和密集型卷积网络思想,提出一种多尺度密集残差网络模型。方法 本文使用3种不同尺度卷积核对输入的低分辨率图像进行卷积处理,采集不同卷积核下的底层特征,这样可以较多地提取低分辨率图像中的细节信息,有利于图像恢复。再将采集的特征信息输入残差块中,每个残差块都包含了多个由卷积层和激活层构成的特征提取单元。另外,每个特征提取单元的输出都会通过短路径连接到下一个特征提取单元。短路径连接可以有效地缓解梯度消失现象,加强特征传播,促进特征再利用。接下来,融合3种卷积核提取的特征信息,经过降维处理后与3×3像素的卷积核提取的特征信息相加形成全局残差学习。最后经过重建层,得到清晰的高分辨率图像。整个训练过程中,一幅输入的低分辨率图像对应着一幅高分辨率图像标签,这种端到端的学习方法使得训练更加迅速。结果 本文使用两个客观评价标准PSNR(peak signal-to-noise ratio)和SSIM(structural similarity index)对实验的效果图进行测试,并与其他主流的方法进行对比。最终的结果显示,本文算法在Set5等多个测试数据集中的表现相比于插值法和SRCNN算法,在放大3倍时效果提升约3.4 dB和1.1 dB,在放大4倍时提升约3.5 dB和1.4 dB。结论 实验数据以及效果图证明本文算法能够较好地恢复低分辨率图像的边缘和纹理信息。  相似文献   

13.
目的 基于神经网络的图像超分辨率重建技术主要是通过单一网络非线性映射学习得到高低分辨率之间特征信息关系来进行重建,在此过程中较浅网络的图像特征信息很容易丢失,加深网络深度又会增加网络训练时间和训练难度。针对此过程出现的训练时间长、重建结果细节信息较模糊等问题,提出一种多通道递归残差学习机制,以提高网络训练效率和图像重建质量。方法 设计一种多通道递归残差网络模型,该模型首先利用递归方法将残差网络块进行复用,形成32层递归网络,来减少网络参数、增加网络深度,以加速网络收敛并获取更丰富的特征信息。然后采集不同卷积核下的特征信息,输入到各通道对应的递归残差网络后再一起输入到共用的重建网络中,提高对细节信息的重建能力。最后引入一种交叉学习机制,将通道1、2、3两两排列组合交叉相连,进一步加速不同通道特征信息融合、促进参数传递、提高网络重建性能。结果 本文模型使用DIV2K (DIVerse 2K)数据集进行训练,在Set5、Set14、BSD100和Urban100数据集上进行测试,并与Bicubic、SRCNN (super-resolution convolutional neural network)、VDSR (super-resolution using very deep convolutional network)、LapSRN (deep Laplacian pyramid networks for fast and accurate super-resolution)和EDSR_baseline (enhanced deep residual networks for single image super-resolution_baseline)等方法的实验结果进行对比,结果显示前者获取细节特征信息能力提高,图像有了更清晰丰富的细节信息;客观数据方面,本文算法的数据有明显的提升,尤其在细节信息较多的Urban100数据集中PSNR (peak signal-to-noise ratio)平均分别提升了3.87 dB、1.93 dB、1.00 dB、1.12 dB和0.48 dB,网络训练效率相较非递归残差网络提升30%。结论 本文模型可获得更好的视觉效果和客观质量评价,而且相较非递归残差网络训练过程耗时更短,可用于复杂场景下图像的超分辨率重建。  相似文献   

14.
目的 以卷积神经网络为代表的深度学习方法已经在单帧图像超分辨领域取得了丰硕成果,这些方法大多假设低分辨图像不存在模糊效应。然而,由于相机抖动、物体运动等原因,真实场景下的低分辨率图像通常会伴随着模糊现象。因此,为了解决模糊图像的超分辨问题,提出了一种新颖的Transformer融合网络。方法 首先使用去模糊模块和细节纹理特征提取模块分别提取清晰边缘轮廓特征和细节纹理特征。然后,通过多头自注意力机制计算特征图任一局部信息对于全局信息的响应,从而使Transformer融合模块对边缘特征和纹理特征进行全局语义级的特征融合。最后,通过一个高清图像重建模块将融合特征恢复成高分辨率图像。结果 实验在2个公开数据集上与最新的9种方法进行了比较,在GOPRO数据集上进行2倍、4倍、8倍超分辨重建,相比于性能第2的模型GFN(gated fusion network),峰值信噪比(peak signal-to-noive ratio,PSNR)分别提高了0.12 d B、0.18 d B、0.07 d B;在Kohler数据集上进行2倍、4倍、8倍超分辨重建,相比于性能第2的模型GFN,PSNR值分别...  相似文献   

15.
王峰  蔡立志  张娟 《计算机应用研究》2021,38(11):3478-3483
针对低分辨率模糊图像实施超分辨率重建后出现大量伪影和边缘纹理不清晰问题,提出了一种双分支融合的反馈迭代金字塔算法.首先采用不同的分支模块分别提取低分辨率模糊图像中潜在的去模糊特征和超分辨率特征信息;然后采用自适应融合机制将两种不同性质的特征进行信息匹配,使网络在去模糊和超分辨率重建模块中更加关注模糊区域;其次使用迭代金字塔重建模块将低分辨率模糊图像渐进重建为逼近真实分布的超分辨率清晰图像;最后重建图像通过分支反馈模块生成清晰低分辨率图像,构建反馈监督.在GOPRO数据集中与现有算法的对比实验结果表明,所提算法能够生成纹理细节更加清晰的超分辨率图像.  相似文献   

16.
目的 基于深度学习的图像超分辨率重构研究取得了重大进展,如何在更好提升重构性能的同时,有效降低重构模型的复杂度,以满足低成本及实时应用的需要,是该领域研究关注的重要问题。为此,提出了一种基于通道注意力(channel attention,CA)嵌入的Transformer图像超分辨率深度重构方法(image super-resolution with channelattention-embedded Transformer,CAET)。方法 提出将通道注意力自适应地嵌入Transformer变换特征及卷积运算特征,不仅可充分利用卷积运算与Transformer变换在图像特征提取的各自优势,而且将对应特征进行自适应增强与融合,有效改进网络的学习能力及超分辨率性能。结果 基于5个开源测试数据集,与6种代表性方法进行了实验比较,结果显示本文方法在不同放大倍数情形下均有最佳表现。具体在4倍放大因子时,比较先进的SwinIR (image restoration using swin Transformer)方法,峰值信噪比指标在Urban100数据集上得到了0.09 dB的提升,在Manga109数据集提升了0.30 dB,具有主观视觉质量的明显改善。结论 提出的通道注意力嵌入的Transformer图像超分辨率方法,通过融合卷积特征与Transformer特征,并自适应嵌入通道注意力特征增强,可以在较好地平衡网络模型轻量化同时,得到图像超分辨率性能的有效提升,在多个公共实验数据集的测试结果验证了本文方法的有效性。  相似文献   

17.
针对现有卷积神经网络图像超分辨率算法容易出现过拟合、损失函数的收敛性不足等问题,结合超分辨率算法和生成式对抗网络(GAN)理论,设计一种基于生成式对抗网络的超分辨率算法PESRGAN用于恢复四倍下采样的图像。首先使用残差密集块(RDB)作为基本结构单元,有效避免了过拟合问题;其次使用双层特征损失并使用渗透指数(PI)作为损失的权值,更好地去学习低分辨率到高分辨率图像之间的映射关系;同时使用VGG19作为判别网络高分辨率图像进行分类;最后使用经典数据集,将PESRGAN算法与双三次插值(Bicubic)、SRGAN、ESRGAN算法在客观参数和主观视觉效果进行对比。实验结果表明:在经典数据集上,PESRGAN的平均峰值信噪比(PSNR)达到25.4 dB、平均结构相似性(SSIM)达到0.73,平均渗透指数(PI)达到1.15,在客观参数和主观评价上均优于其他算法,证明了PESRGAN有良好的超分辨率重建的效果。  相似文献   

18.
目的 深度卷积网络在图像超分辨率重建领域具有优异性能,越来越多的方法趋向于更深、更宽的网络设计。然而,复杂的网络结构对计算资源的要求也越来越高。随着智能边缘设备(如智能手机)的流行,高效能的超分重建算法有着巨大的实际应用场景。因此,本文提出一种极轻量的高效超分网络,通过循环特征选择单元和参数共享机制,不仅大幅降低了参数量和浮点运算次数(floating point operations,FLOPs),而且具有优异的重建性能。方法 本文网络由浅层特征提取、深层特征提取和上采样重建3部分构成。浅层特征提取模块包含一个卷积层,产生的特征循环经过一个带有高效通道注意力模块的特征选择单元进行非线性映射提取出深层特征。该特征选择单元含有多个卷积层的特征增强模块,通过保留每个卷积层的部分特征并在模块末端融合增强层次信息。通过高效通道注意力模块重新调整各通道的特征。借助循环机制(循环6次)可以有效提升性能且大幅减少参数量。上采样重建通过参数共享的上采样模块同时将浅层与深层特征进放大、融合得到高分辨率图像。结果 与先进的轻量级网络进行对比,本文网络极大减少了参数量和FLOPs,在Set5、Set14、B100、Urban100和Manga109等基准测试数据集上进行定量评估,在图像质量指标峰值信噪比(peak signal to noise ratio,PSNR)和结构相似性(structural similarity,SSIM)上也获得了更好的结果。结论 本文通过循环的特征选择单元有效挖掘出图像的高频信息,并通过参数共享机制极大减少了参数量,实现了轻量的高质量超分重建。  相似文献   

19.
目的 超分辨率(super resolution,SR)重建任务通过划分窗口引入自注意力机制进行特征提取,获得了令人瞩目的成绩。针对划分窗口应用自注意力机制时会限制图像信息聚合范围、制约模型对特征信息进行建模的问题,本文基于转置自注意力机制构建全局和局部信息建模网络捕捉图像像素依赖关系。方法 首先采用轻量的基线模型对特征进行简单关系建模,然后将空间维度上的自注意力机制转换到通道维度,通过计算交叉协方差矩阵构建各像素点之间的长距离依赖关系,接着通过引入通道注意力块补充图像重建所需的局部信息,最后构建双门控机制控制信息在模型中的流动,提高模型对特征的建模能力及其鲁棒性。结果 实验在5个基准数据集Set5、Set14、BSD100、Urban100、Manga109上与主流方法进行了比较,在不同比例因子的SR任务中均获得了最佳或者次佳的结果。与SwinIR(image restoration using swin Transformer)在×2倍SR任务中相比,在以上5个数据集上的峰值信噪比分别提升了0.03dB、0.21dB、0.05dB、0.29dB和0.10dB,结构相似度也获得了极大提升,同时视觉感知优化十分明显。结论 所提出的网络模型能够更充分地对特征信息全局关系进行建模,同时也不会丢失图像特有的局部相关性。重建图像质量明显提高,细节更加丰富,充分说明了本文方法的有效性与先进性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号