首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
Here we show that cold-rolling of tungsten (W) decreases the stable crack growth onset temperature. Furthermore, we show that stable crack growth is accompanied by crack bridging, which in turn is triggered by dislocation activity. The entire stable crack growth regime shows ductile intergranular fracture.Our ductilisation approach is the modification of microstructure through cold-rolling. In this work, we assess two different microstructures obtained from (i) cold-rolled and (ii) severely cold-rolled tungsten plates. From these plates, single-edge cracked-plate tension (SECT) specimens were cut and tested in the L-T direction. Crack growth resistance (R) curves were obtained using the direct-current-potential-drop method (DCPM). The experiments show the following results: cold-rolled plates are brittle at room temperature (RT), but show stable crack growth at 250 °C (523 K) and a fracture toughness, KIQ, of about 100 MPa(m)1/2 at a crack extension, Δa, of 0.6 mm. Severely cold-rolled tungsten plates show stable crack growth at RT and a fracture toughness, KIQ, of 100 MPa(m)1/2 at a crack extension, Δa, of 0.3 mm. Scanning electron microscopy (SEM) analyses of the stable crack growth region show intergranular fracture with microductile character.The question of why cold-rolling causes the stable crack growth onset temperature to decrease (or in other words, why cold-rolling causes the brittle-to-ductile transition (BDT) temperature to decrease) is discussed against the background of (i) intrinsic and extrinsic size effects, (ii) crystallographic texture, (iii) impurities and (iv) the role of dislocations. Our results suggest that the spacing between the dislocation nucleation sites (high angle grain boundaries (HAGBs) act as dislocation source) is the most important parameter responsible for the decrease of the stable crack growth onset temperature.  相似文献   

2.
Fatigue crack growth behavior was studied for a Zr58.5Cu15.6Ni12.8Al10.3Nb2.8 bulk metallic glass in ambient air, demonstrating a fatigue threshold of ΔKTH = 1.4 MPa√m and a Paris law exponent of 1.7. A nearly stress intensity-independent crack growth regime occurred at 2.5 × 10?8 m cycle–1, suggesting an environmental influence of ambient air on the fatigue crack growth, as has been observed for Zr–Ti–Ni–Cu–Be bulk metallic glasses. However, this environmental fatigue effect was shifted to 25× higher growth rates due to the different chemistry.  相似文献   

3.
The dominant mechanics and mechanisms of fatigue crack propagation in ca. 500 nm thick free-standing copper films were evaluated at the submicron level using fatigue crack propagation experiments at three stress ratios, R = 0.1, 0.5 and 0.8. Fatigue cracking initiated at the notch root and propagated stably under cyclic loading. The fatigue crack propagation rate (da/dN) vs. stress intensity factor range (ΔK) relation was dependent on the stress ratio R;da/dN, increases with increasing R. Plots of da/dN vs. the maximum stress intensity factor (Kmax) exhibited coincident features in the high-Kmax region (Kmax ? 4.5 MPa m1/2) irrespective of R, indicating that Kmax is the dominant factor in fatigue crack propagation. In this region, the fatigue crack propagated in tensile fracture mode irrespective of the R value. The region ahead of the fatigue crack tip is plastically stretched by tensile deformation, causing necking deformation in the thickness direction and consequent chisel-point fracture. In contrast, in the low-Kmax region (Kmax < 4.5 MPa m1/2), the da/dN vs. Kmax function assumes higher values with decreasing R; in this region, the fracture mechanism depends on R. At the higher R value (R = 0.8), the fatigue crack propagates in the tensile fracture mode similar to that in the high-Kmax region. On the other hand, at the lower R values (R = 0.1 and 0.5), a characteristic mechanism of fatigue crack propagation appears: within several grains, intrusions/extrusions form ahead of the crack tip along the Σ3 twin boundaries, and the fatigue crack propagates preferentially through the intrusions/extrusions.  相似文献   

4.
《Acta Materialia》2007,55(19):6634-6641
Two different mechanisms of the stress-induced martensitic phase transformation at the crack tip in body-centered cubic (bcc) structural metals and alloys have been studied by molecular dynamics simulations. For cracks with 〈1 0 0〉 crack fronts, the bcc (B2) to face-centered cubic (fcc) (L10) phase transformation along the Bain stretch occurs. Whereas for cracks with 〈1 1 0〉 crack fronts, either the bcc (B2) to fcc (L10) or the bcc (B2) to hexagonal close-packed (hcp) transformation is the candidate. We have found that the combination of local stress and crystal orientation plays an important role in the mechanism of the martensitic transformation. Thus a simple way to determine the mechanism of the martensitic transformation is developed. The complicated deformation behaviors at the crack tip in bcc iron and B2 NiAl are discussed in terms of this method.  相似文献   

5.
《Acta Materialia》1999,47(11):3247-3261
A surprising phenomenon is investigated where titanium alloys exhibit no threshold fatigue crack growth value if Kmax in the Kmax-constant testing procedure exceeds a certain value. The crack growth rate increases with decreasing ΔK up to final fracture. The phenomenon was found repeatedly for Ti–6Al–2Sn–4Zr–6Mo above Kmax=21 MPa√m (equal to 72% of KIC), and its causes were investigated. The same crack growth rates as in the Kmax-constant test were reproduced by two independent experimental procedures, the so-called “jump” test and sustained K cracking experiments along with a calculation. It is demonstrated that the observed phenomenon is not a special crack growth feature or a new phenomenon, but simply caused by time-dependent crack growth, which is known to exist in titanium alloys or steels. Fractographic work revealed that intergranular crack growth along α and transformed β grain boundaries increases with decreasing ΔK and increasing Kmax value, accompanied by creep deformation in the transformed β grains. The conditions for time-dependent cracking are believed to be a sufficiently high stress and strain field in the crack tip region, along with hydrogen-assisted cracking.  相似文献   

6.
Multi-phase Fe90?xZr10Crx alloys with 0  x  10 containing cubic C15 and hexagonal C14/C36 Laves phases have been prepared by copper mold casting. The microstructure of the samples consists of micrometer-sized Laves phase particles embedded in an ultrafine eutectic matrix of alternating lamellae of α-Fe and Laves phases. Room temperature compression tests of the binary alloy reveal a high strength of 1900 MPa combined with a plastic strain of about 9%. The addition of Cr improves the plastic strain up to 17% while reducing the strength only by about 70 MPa. The increased plastic deformation is linked to the specific structural features of the Laves phases. For the binary alloy, shearing and crack formation within the C15 phase limits plastic deformation. In contrast, in the samples containing Cr no shearing occurs within the C14/C36 phases and crack formation, which is observed at the particle/ferrite interface, is retarded.  相似文献   

7.
Recent observations regarding the dynamic transformation of deformed austenite at temperatures above the Ae3 are reviewed. Experimental results obtained on four different steels over the temperature range from 743 to 917 °C and at strains up to ε = 5 are described. It is shown that there is a critical strain for the formation of superequilibrium ferrite and that the volume fraction of transformed ferrite increases with the strain. The structures observed are Widmanstätten in form and appear to have nucleated displacively. The effect of deformation on the Gibbs energy of austenite is estimated by assuming that the austenite continues to work-harden after initiation of the transformation and that its flow stress and dislocation density can be derived from the experimental flow curve by making suitable assumptions about two-phase flow. By further taking into account the inhomogeneity of the dislocation density, Gibbs energy contributions (driving forces) are derived that are sufficient to promote transformation as much as 100 °C above the Ae3. The C diffusion times required for the dynamic formation of the cementite particles observed are estimated. These range from ~25 to 100 μs and are therefore consistent with the times available during rolling. The Gibbs energy calculations suggest that growth of the Widmanstätten ferrite is followed by C diffusion at the lower carbon contents, while it is accompanied by C diffusion at the higher carbon levels.  相似文献   

8.
《Acta Materialia》2007,55(17):5924-5933
This paper focuses on the study of the flaw tolerance and resistance curve behaviour (R-curve) in 3Y–TZP/Nb composites containing indentation-induced small surface cracks. It has been found that toughening and resistance curve behaviour occurs as a result of the combined effects of crack bridging and transformation toughening. The ZrO2–Nb composites are described as synergistically toughened composites due to anticipated interactions between crack bridging and stress-induced phase transformation. It has been found that these interactions produce a notable increase in toughness (Kss  13 MPa m1/2) greater than the sum of the combination that would be provided separately by the two types of reinforcement.  相似文献   

9.
An investigation was made of the influence of long-term aging (up to 7000 h) at low temperatures (300 and 400 °C) on the corrosion and mechanical properties of a 2205 duplex stainless steel. The selective corrosion behavior of austenite and ferrite phases was found to reverse in response to aging treatment at 400 °C. The degree of Cr depletion (Ir/Ia) increased considerably with the increase in aging time at 400 °C and no self-healing process was observed even after aging for 7000 h. A good correlation was observed between the electrochemical results and the microhardness of ferrite phase.  相似文献   

10.
《Acta Materialia》2007,55(8):2587-2598
Complex multiphase microstructures were obtained in transformation induced plasticity C–Mn–Si–(Nb–Al–Mo) steels by simulated controlled thermomechanical processing. These microstructures were characterized using transmission electron microscopy, X-ray diffraction and three-dimensional atom probe tomography (APT), which was used to determine the partitioning of elements between different phases and microconstituents. The measured carbon concentration (∼0.25 at%) in the ferrite of carbide-free bainite was higher than expected from para-equilibrium between the austenite and ferrite, while the concentrations of substitutional elements were the same as in the parent austenite suggesting that incomplete bainite transformation occurred. In contrast, the distribution of substitutional elements between the ferrite lath and austenite in carbide-containing bainite indicated a complete bainite reaction. The average carbon content in the retained austenite (3.2 ± 1.6 at%) was somewhat higher than the T0 limit. On the basis of the APT measured composition, the calculated Ms temperatures for retained austenite were above room temperature, indicating its low chemical stability.  相似文献   

11.
The microstructural modifications occurring during annealing treatment of an Fe–0.35 C–3.5 Mn–5.8 Al ferrite-based lightweight steel and its effects on the tensile properties were investigated with respect to (α + γ) duplex microstructures. Steels annealed above the dissolution finishing temperature of κ-carbides (795 °C) were basically composed of ferrite band and austenite band in a layered structure. As the annealing temperature was increased the tensile strength increased, while the yield strength and elongation decreased. This could be explained by a decrease in the mechanical as well as thermal stability of austenite with increasing size and austenite volume fraction. In the 980 °C annealed steel in particular, whose mechanical stability due to austenite was lowest, cracks were readily formed at ferrite/austenite (or martensite) interfaces with little deformation, thereby leading to the least tensile elongation. In order to obtain the best combination of strength and ductility the formation of austenite having an appropriate mechanical stability was essentially needed, and could be achieved when 22–24 vol.% fine austenite was homogeneously distributed in the ferrite matrix, as in the 830 °C or 880 °C annealed steels.  相似文献   

12.
《Intermetallics》2007,15(5-6):687-693
Mo–Si–B alloys are being considered as possible candidates for high-temperature applications beyond the capabilities of Ni-based superalloys. In this paper, the high-temperature (1000–1400 °C) compression response over a range of quasi-static strain rates, as well as the monotonic and cyclic crack growth behaviors (as a function of temperature from 20 °C to 1400 °C) of a two-phase Mo–Si–B alloy containing a Mo solid solution matrix (Mo(Si,B)) with ∼38 vol% of the T2 phase (Mo5SiB2) is discussed. Analysis of the compression results confirmed that deformation in the temperature–strain-rate space evaluated is matrix-dominated, yielding an activation energy of ∼415–445 kJ/mol. Fracture toughness of the Mo–Si–B alloy varies from ∼8 MPa√m at room temperature to ∼25 MPa√m at 1400 °C, the increase in toughness with temperature being steepest between 1200 °C and 1400 °C. S–N response at room temperature is shallow whereas at 1200 °C, a definitive fatigue response is observed. Fatigue crack growth studies using R = 0.1 confirm the Paris slope for the two alloys to be high at room temperature (∼20–30) but decreases with increasing temperature to ∼3 at 1400 °C. The crack growth rate (da/dN) for a fixed value of ΔK in the Paris regime in the 900–1400 °C range, increases with increasing temperature.  相似文献   

13.
Fe–Pd–Cu thin films are of great interest for applications in magnetic shape memory microsystems due to their increased martensitic transformation temperature. Here we analyse the consequences of Cu addition to Fe–Pd on the binding energy and magnetic properties by a combination of thin film experiments and first-principles calculations. Strained epitaxial growth of Fe70Pd30-xCux with x = 0, 3, 7 is used to freeze intermediate stages during the martensitic transformation. This makes a large range of tetragonal distortion susceptible for analysis, ranging from body-centred cubic to beyond face-centred cubic (1.07 < c/abct < 1.57). We find that Cu enhances the quality of epitaxial growth, while spontaneous polarization and Curie temperature are reduced only moderately, in agreement with our calculations. Beyond c/abct > 1.41 the samples undergo structural relaxations through adaptive nanotwinning. Cu enhances the magnetocrystalline anisotropy constant K1 at room temperature, which reaches a maximum of ?2.4 × 105 J m?3 around c/abct = 1.33. This value exceeds those of binary Fe70Pd30 and the prototype Ni–Mn–Ga magnetic shape memory system. Since K1 represents the maximum driving energy for variant reorientation in magnetic shape memory systems, we conclude that Fe–Pd–Cu alloys offer a promising route towards microactuator applications with significantly improved work output.  相似文献   

14.
《Acta Materialia》2008,56(10):2203-2211
Ferrite growth kinetics was measured under highly controlled decarburization conditions in an Fe–0.94%Mn–0.57%C (mass%) alloy. The observed growth kinetics closely followed the predictions of the local equilibrium non-partitioning (LE-NP) model over the temperature range 725–775 °C. A transition from LE-NP to paraequilibrium (PE) kinetics was observed, for the first time, as the temperature was increased from 775 °C to 825 °C. Long-lived parabolic kinetic states that are intermediate between LE-NP and PE were observed at these intermediate temperatures. Above 825 °C, ferrite growth appeared to follow the predictions of the PE model up to the T0 temperature at which ferrite growth stopped. These novel results are attributed to the segregation of Mn to the moving interface. It is thought that this process has the effect of decreasing the Mn concentration on the austenite side of the interface and, consequently, extending the PE state.  相似文献   

15.
The low cycle fatigue behaviour of precipitation strengthened nickel-base superalloy 720Li containing a low concentration of interstitial carbon and boron was studied at 25, 400 and 650 °C. Cyclic stress response at all temperatures was stable under fully reversed constant total strain amplitude (Δε/2) when Δε/2 ? 0.6%. At Δε/2 > 0.6%, cyclic hardening was followed by softening, until fracture at 25 and 650 °C. At 400 °C, however, cyclic stress plateaued after initial hardening. Dislocation–dislocation interactions and precipitate shearing were the micromechanisms responsible for the cyclic hardening and softening, respectively. The number of reversals to failure vs. plastic strain amplitude plot exhibits a bilinear Coffin–Manson relation. Transmission electron microscopy substructures revealed that planar slip was the major deformation mode under the conditions examined. However, differences in its distribution were observed to be the cause for the bilinearity in fatigue lives. The presence of fine deformation twins at low Δε/2 at 650 °C suggests the role of twinning in homogenization of cyclic deformation.  相似文献   

16.
《Acta Materialia》2008,56(5):985-994
The fatigue behavior of as-cast Mg–12%Zn–1.2%Y–0.4%Zr alloy has been investigated. The SN curve showed that the fatigue strength at 107 cycles was 45 MPa. Scanning electron microscopy observations on the surfaces of the failed and unfailed specimens (after up to 1 × 107 cycles) suggested that the slip bands could act as preferential sites for non-propagating fatigue crack initiation, and the I-phase could effectively retard fatigue crack propagation (FCP). The macro fracture morphology clearly indicated that the overall fracture surface was composed of three regions, i.e. a fatigue crack initiation region (Region 1), a steady crack propagation region (Region 2) and a tearing region (Region 3). High-magnification fractographs showed that only porosities can act as the crack initiation sites for all specimens. Moreover, for specimens with fatigue lifetimes lower than 2 × 105 cycles, the cracks mostly initiated at the subsurface or surface of the specimen. However, when the fatigue lifetime was equal to or higher than 2 × 105 cycles, the fatigue crack initiation sites transferred to the interior of the specimen. The maximum stress intensity factors corresponding to the transition sites between Regions 1, 2 and 3 were 2 and 4.2 MPa m1/2, respectively. When the maximum stress intensity factor Kmax was lower than 4.2 MPa m1/2, in the steady crack propagation region, due to the retarding effect of I-phase/α-Mg matrix interfaces, the fatigue cracks tended to pass the I-phase/α-Mg matrix eutectic pockets directly and propagated through the grain cells, resulting in the formation of many flat facets on the fracture surface. However, when the maximum stress intensity factor was higher than 4.2 MPa m1/2, in the sudden failure region, the rigid bonding of I-phase/α-Mg matrix interfaces was destroyed and the cracks preferentially propagated along the interfaces, which resulted in the fracture surface being almost completely composed of cracked I-phase/α-Mg matrix eutectic pockets. Based on microstructural observation and the fracture characteristics of the two regions, it is suggested that with an increase in crack tip driving force, the FCP mode changes from transgranular propagation to intergranular propagation.  相似文献   

17.
The non-isothermal decomposition of austenite into ferrite and pearlite in Fe–xC–1.5 wt.% Mn steels with x = 0.1, 0.2 and 0.3 wt.% C is investigated by in situ dilatometry and microstructure characterization in magnetic fields up to 16 T. The global shift towards higher temperatures of the respective austenite, ferrite + austenite and ferrite + pearlite stability regions is experimentally quantified. A systematic increase in the ferrite area fraction and proportional reduction of the Vickers hardness values with the magnetic field intensity are also reported. Moreover, the steels’ magnetizations, measured up to 3.5 T and 1100 K, are used to calculate the magnetic contribution to the free energy of the transformation and to account thermodynamically for the field dependence of the transformation temperature. The impact of magnetic field is found to be greater with increasing carbon content in the steels.  相似文献   

18.
The effect of hydrogen on pitting corrosion susceptibility of duplex stainless steel was investigated. Pits are observed on the hydrogen-charged specimen after 6 days of immersion in 6% FeCl3 solution, while no pits on the uncharged specimen even after more than 30 days of immersion, which indicates that hydrogen promotes pitting initiation and pit growth. Moreover, pitting susceptibility increases with hydrogen charging current density. The pitting tends to nucleate initially inside the austenite or at ferrite/austenite boundaries, and then appears in the ferrite, because of different behaviors of hydrogen in two phases, such as solubility and diffusivity of hydrogen.  相似文献   

19.
This paper presents the investigation of the cracking of coatings deposited on steel substrates. The coating on substrate systems consisted on pure tungsten films (W) and films of solid solutions of carbon in tungsten [W(C)], which were deposited by direct current reactive magnetron sputtering on stainless steel substrates. The systems were strained uniaxially with a microtensile device adapted to a scanning electron microscope. The mechanical response was analyzed from the experimental results: the straining of the samples showed an evolution of the density of cracks in the coating, which was described trough an empirical equation based on the Weibull distribution function. The density of cracks, which corresponds to the crack saturation of the coating, appeared to vary inversely with coating thickness. Critical parameters relative to their mechanical stability were also determined from the experimental results: the strain energy release rate for crack extension through the film, Gfc, and the fracture toughness, KfIc, of the coatings. These values are included between 0.2 and 14 J m−2, and between 0.1 and 2.5 MPa m−1/2. The fracture resistance of W and W(C) coatings was found to be correlated to their thickness and microstructure.  相似文献   

20.
A dislocation-based boundary element model was used to simulate intergranular stress corrosion crack propagation in virtual microstructures. A Monte Carlo approach was used in which the propagation of approximately 100 cracks was calculated for different Voronoi generated microstructures. At every simulation step the model gave the position of the crack tip together with stress intensity factors KI and KII. Using a simple power-law-type crack growth rate da/dt=DpKmp, the depth of each particular crack can be calculated knowing the time the samples were exposed to the stress and corrosive environment. Existing experimental data giving crack depth distributions for Alloy 600, and XM-19 and 304 stainless steel are investigated and the best-fit crack growth law established. Alloy 600 in a light water reactor environment and XM-19 in high-temperature water both lead to mp = 3. While for 304 stainless steel in the more aggressive K2S4O6/H2SO4 (pH 2) an exponent mp = 0.8 was found.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号