首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 53 毫秒
1.
由于历史数据和天气因素对光伏出力预测的影响较大,提出了一种日特征相似度与形状相似度相结合的方法,分时段地预测光伏发电功率。该方法首先采用欧式距离法对气象类型进行细分,然后在不同时间段中分别利用两种相似日选取算法选取历史相似日,再利用其对应时段的历史功率值及气象数据,采用BP神经网络对预测日相应时段的功率进行预测,结果表明该方法的预测精度有明显提高。  相似文献   

2.
光伏发电的功率预测是电网运行调度普遍关注的问题。光伏电站大量历史数据的挖掘和利用为波动的光伏功率建模提供了新方向。在采用气象相似日进行光伏发电功率预测的基础上,引入了相似日的光伏发电功率预测误差对预测日的光伏功率进行校正,更进一步提高了光伏发电功率预测的准确性。  相似文献   

3.
基于相似日和CAPSO-SNN的光伏发电功率预测   总被引:3,自引:0,他引:3  
针对光伏发电功率预测精度不高的问题,提出一种基于相似日和云自适应粒子群优化(CAPSO)算法优化Spiking神经网络(SNN)的发电功率预测模型。考虑到季节类型、天气类型和气象等主要影响因素,提出以综合相似度指标进行相似日选取;以SNN强大的计算能力和其善于处理时间序列问题的特点为基础,结合CAPSO算法搜索的随机性和稳定性优化SNN的多突触连接权值,减少对权值的约束,提高算法的收敛精度。根据某光伏电站的实测功率数据对所提模型进行测试和评估,结果表明,该模型比传统预测模型具有更高的预测精度和更好的适用性。  相似文献   

4.
准确预测光伏发电功率有利于并网后电网调度管理,现阶段光伏发电功率预测存在精度较低和对不同天气类型的适应性弱的问题。探索了一种相似日与免疫遗传神经网络(IGA-BP)结合的预测方法:基于天气类型、温度及风速,结合灰色关联度和余弦相似度指标构建气象相似日判别模型;以相似日气象特征向量为输入,建立IGA-BP功率预测模型。利用实测数据对比分析所提IGA-BP模型与GA-BP、BP模型的预测精度,结果为:在不同天气类型下IGA-BP模型具有较高精度,其RMSE平均值为14.142%,TIC平均值为0.017 58,均优于其他对比模型。表明IGA-BP模型能够提高功率预测精度,且具有较高的适应性。  相似文献   

5.
为进一步提升光伏输出功率短期预测的准确性和稳定性,提出一种基于相似日聚类的小波神经网络(wavelet neural network,WNN)和AdaBoost的混合预测模型.首先利用模糊C均值聚类(fuzzy C-means algorithm,FCM)算法将初始数据集按照不同的季节和天气类型进行划分;其次选用WNN...  相似文献   

6.
对光伏发电预测模型的训练时间和网络精度进行综合分析,研究了影响光伏功率预测精度的因素.通过公式确定神经网络隐含层个数的范围,进而确定计及神经网络精度与网络训练时间的隐含层节点数,并提出一种将人工神经网络(Artificial Neural Network,ANN)与小波分解(Wavelet Decomposition,...  相似文献   

7.
梁彩霞  高赵亮 《电气应用》2019,38(3):97-102
光伏电站输出功率受多种外界环境因素影响显著,存在非线性、波动大等缺点。针对这一问题,提出改进的深度置信网络(Deep Belief Network,DBN)的方法。首先利用遗传算法(Genetic Algorithm,GA)为DBN神经网络选取最优的初始权值;其次利用灰色关联度法选择与预测日气象特征相似度高的日期,将这些日期的天气数据和历史发电功率作为训练样本训练DBN神经网络,建立短期光伏预测模型;最后通过仿真算例分析验证了该方法对传统DBN模型预测准确度的提升,且具有一定的可行性。  相似文献   

8.
提出了相似日和动量优化BP神经网络的光伏短期功率预测方法,采用与输出功率强相关的辐照度作为相似变量选取相似日,通过动量法优化并以相似日历史数据和气象信息作为训练样本建立BP神经网络预测模型。以新疆某光伏电站的实际运行数据进行验证分析,结果表明该方法在晴天和非晴天天气环境下能够达到预测精度,验证了所提模型和算法的准确性和有效性。  相似文献   

9.
在分布式光伏电源大规模接入的情况下,发电功率的预测问题受到越来越多的重视。本文在全面统计分析影响光伏电源发电功率的因素的基础上,提出可针对气象部门提供的预测日分时气象数据分别寻找相似数据点,并将历史数据重新组合成为新的相似日,再进行预测。本文以某区域分布式电源智能管控平台的实测数据为样本,运用BP算法进行训练和预测,取得了较好效果,尤其在天气突变时优势更为明显。  相似文献   

10.
为了增强光伏并网的稳定性,提高光伏发电功率预测精度,提出一种基于相似日聚类、群分解(swarm decomposition, SWD)和MBI-PBI-ResNet深度学习网络模型的光伏发电功率超短期预测方法。首先,使用快速傅里叶变换(fast fourier transform, FFT)提取太阳辐照度的期望频率,将其作为聚类特征向量,并根据此聚类特征向量采用自适应仿射传播聚类(adaptive affinity propagation clustering, AdAP)实现相似日聚类。其次,对每一类相似日分别使用群分解算法进行分解,以提取原始数据的多尺度波动规律特征。最后,利用MBI-PBI-ResNet来实现对天气环境多变量关联影响下的时序特征挖掘以及对多尺度分量的局部波形空间特征和长时间依赖时序特征的同时挖掘,并对不同类型特征进行综合集成来实现光伏发电功率超短期预测。研究结果表明:所提方法在光伏发电功率超短期预测领域相较于其他深度学习方法预测精度提高了3%以上,说明此方法在光伏发电功率超短期预测领域具有较高的预测精度和较强的泛化能力。  相似文献   

11.
为了提高光伏发电功率预测精度,根据不同天气类型下光伏输出功率特点,确定光伏发电功率预测模型的输入量。针对狼群算法(wolf pack algorithm,WPA)缺陷,对狼群游走位置和奔袭步长进行改进,得到改进狼群算法(improved wolf pack algorithm,IWPA),并通过IWPA对最小二乘支持向量机(least squares support vector machine,lSSVM)进行优化,建立了考虑天气类型和相似日的IWPA-LSSVM光伏发电功率预测模型。采用不同天气类型下的光伏发电功率数据进行仿真,结果表明:无论是晴天、多云还是阴雨天气,所提方法预测精度更高,回归拟合时的误差波动更小。  相似文献   

12.
为提高微网短期负荷预测的效率和精度,针对微网负荷基数小,波动性和随机性大,历史数据相对短缺的特点,在负荷点空间尺度上,提出一种基于相似日和LS-SVM微网短期负荷预测方法。该方法在预测空间尺度和样本选择上有别于大电网,充分考虑气象因素的累积效应、短期负荷的连续性和周期性以及时间距离的“饱和效应”,形成一种新的相似日评价函数来选取训练样本,并结合短期负荷预测的特点形成LS-SVM的输入量,然后将训练好的模型用于预测。算例表明,该方法有效可行,精度较高,且比较实用。  相似文献   

13.
通过引入人体舒适度指数,综合分析了气象因素对电力负荷的影响,并加入星期类型、日天气类型、日期差3个主要影响因素,构成了日特征向量,采用求取相似度的方法来选取相似日,利用相似日的日特征向量和负荷数据来建立PSO-SVM预测模型。经2001年EUNITE负荷预测竞赛的数据预测分析表明,该方法适应性较强,能够选取较合适的相似日,有较高的预测精度和推广能力。  相似文献   

14.
光伏发电的随机性和不确定性是制约光伏发展的主要原因。为了提高短期光伏发电功率预测精度,提出了一种考虑天气类型和历史相似日的短期光伏输出功率预测方法。针对不同季节和天气类型划分历史数据,根据灰色关联度计算结果确定相似日。采用混沌初始化、控制因子非线性调整和莱维飞行等策略对斑点鬣狗优化(spotted hyena optimizer)算法进行改进,采用改进斑点鬣狗算法(improved spotted hyena optimizer)对核极限学习机进行优化,建立基于改进斑点鬣狗算法优化(kernel extreme learning machine,KELM)的短期光伏输出功率预测模型。利用实际光伏电站监测数据进行仿真分析,结果表明,基于ISHO-KELM的短期光伏输出功率预测模型能够降低光伏输出功率预测过程中的波动性,提高预测精度,验证了所提光伏预测方法的正确性和实用性。  相似文献   

15.
针对区域风、光电站群的功率预测,由于各站建站时间不同、单站预报精度残次不齐,导致传统的单站功率累加法预测精度和运行效率不高的问题,采用基于机器学习的二分K均值聚类算法分别对区域内的风电场和光伏电站群进行合理划分,结合区域内各电站历史功率数据及区域总历史功率数据的相关性,选取出各区域的代表电站。在对数值预报要素进行优化订正后,采用BP神经网络法建立基于风电场和光伏电站集群划分的短期功率预测框架模型。结果表明:采用该方法的集群式风电和光伏短期功率预测准确率高于或接近于传统单站累加的预测精度,且该方法在保证预测精度的同时,能够显著提高建模效率。  相似文献   

16.
针对传统的BP神经网络对短期风电功率预测精度不高的缺点,提出粒子群算法改进帝国竞争算法(PSO-ICA),通过PSO算法改进殖民地同化操作提高ICA算法的全局寻优能力,输出全局最优解作为BP神经网络初始权值阈值。同时用主成分分析法降维压缩输入数据,提高网络泛化能力。利用PSO-ICA-BP预测模型对某风电场实际风电功率数据进行预测,仿真结果表明该模型预测误差更小,对短期风电功率预测更有效。  相似文献   

17.
提出了一种基于相似点的地区短期负荷预测新方法并形成了基于该算法的专家支持系统,该系统可定量地考虑气象信息、小水电、工作日类型等负荷相关因素。采用该系统对某基荷较小的地区电网进行负荷预测,结果说明了本文算法的正确性和有效性。基于本文算法而编制的软件系统即将投入实际应用。  相似文献   

18.
对风电场进行短期功率预测能够有效减小风电场出力波动对电力系统的影响,降低电力系统的运行成本和旋转备用。综合考虑天气因素以及风速连续性的影响,提出基于相似日和风电连续性的风电场短期功率预测方法。首先,完成BP神经网络训练样本的选择,然后利用预测日前一天的风速作为输入,完成预测日功率的预测,最后将此模型运用于威海某风电场,并与仅考虑风速连续性得到的预测结果相比较,分析预测误差,结果表明前者预测精度更高。  相似文献   

19.
为减小构成初始条件的样本数据所导致的预测误差,本文借鉴负荷预测中基于相似日选取样本的思想,采用趋势相似度的概念选择相似日作为模型输入量,对短期风电功率进行混沌预测。选择我国某区域风电功率数据作为研究对象,考虑不同预测步长和季节差异,进行了大量的算例仿真,结果验证了该方法提高混沌预测精度的有效性和适用性。  相似文献   

20.
风速具有较大的随机波动性,影响电网的稳定性,良好的风速预测是解决风电并网问题的关键。为了提高风速预测的精确性,首先对风速数据进行相似性样本的提取,采用分段线性化的搜索方法,求出各小段风速的斜率与长度所占的比重,继而找出相似性距离最小的曲线簇。并以此作为训练样本,采用最小二乘支持向量机(LSSVM)模型对风速进行预测。预测结果表明,采用风速的相似曲线簇进行LSSVM模型训练所得的风速和风电功率预测结果更优。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号