共查询到15条相似文献,搜索用时 546 毫秒
1.
2.
3.
基于相似日和CAPSO-SNN的光伏发电功率预测 总被引:3,自引:0,他引:3
针对光伏发电功率预测精度不高的问题,提出一种基于相似日和云自适应粒子群优化(CAPSO)算法优化Spiking神经网络(SNN)的发电功率预测模型。考虑到季节类型、天气类型和气象等主要影响因素,提出以综合相似度指标进行相似日选取;以SNN强大的计算能力和其善于处理时间序列问题的特点为基础,结合CAPSO算法搜索的随机性和稳定性优化SNN的多突触连接权值,减少对权值的约束,提高算法的收敛精度。根据某光伏电站的实测功率数据对所提模型进行测试和评估,结果表明,该模型比传统预测模型具有更高的预测精度和更好的适用性。 相似文献
4.
准确预测光伏发电功率有利于并网后电网调度管理,现阶段光伏发电功率预测存在精度较低和对不同天气类型的适应性弱的问题。探索了一种相似日与免疫遗传神经网络(IGA-BP)结合的预测方法:基于天气类型、温度及风速,结合灰色关联度和余弦相似度指标构建气象相似日判别模型;以相似日气象特征向量为输入,建立IGA-BP功率预测模型。利用实测数据对比分析所提IGA-BP模型与GA-BP、BP模型的预测精度,结果为:在不同天气类型下IGA-BP模型具有较高精度,其RMSE平均值为14.142%,TIC平均值为0.017 58,均优于其他对比模型。表明IGA-BP模型能够提高功率预测精度,且具有较高的适应性。 相似文献
5.
6.
7.
光伏电站输出功率受多种外界环境因素影响显著,存在非线性、波动大等缺点。针对这一问题,提出改进的深度置信网络(Deep Belief Network,DBN)的方法。首先利用遗传算法(Genetic Algorithm,GA)为DBN神经网络选取最优的初始权值;其次利用灰色关联度法选择与预测日气象特征相似度高的日期,将这些日期的天气数据和历史发电功率作为训练样本训练DBN神经网络,建立短期光伏预测模型;最后通过仿真算例分析验证了该方法对传统DBN模型预测准确度的提升,且具有一定的可行性。 相似文献
8.
9.
10.
为了增强光伏并网的稳定性,提高光伏发电功率预测精度,提出一种基于相似日聚类、群分解(swarm decomposition, SWD)和MBI-PBI-ResNet深度学习网络模型的光伏发电功率超短期预测方法。首先,使用快速傅里叶变换(fast fourier transform, FFT)提取太阳辐照度的期望频率,将其作为聚类特征向量,并根据此聚类特征向量采用自适应仿射传播聚类(adaptive affinity propagation clustering, AdAP)实现相似日聚类。其次,对每一类相似日分别使用群分解算法进行分解,以提取原始数据的多尺度波动规律特征。最后,利用MBI-PBI-ResNet来实现对天气环境多变量关联影响下的时序特征挖掘以及对多尺度分量的局部波形空间特征和长时间依赖时序特征的同时挖掘,并对不同类型特征进行综合集成来实现光伏发电功率超短期预测。研究结果表明:所提方法在光伏发电功率超短期预测领域相较于其他深度学习方法预测精度提高了3%以上,说明此方法在光伏发电功率超短期预测领域具有较高的预测精度和较强的泛化能力。 相似文献
11.
光伏发电功率预测对提高并网后电网的稳定性及安全性具有重要意义。文章提出一种基于相似日和小波神经网络(WNN)的光伏功率超短期预测方法。首先利用光伏发电系统的历史气象信息建立气象特征向量,通过计算灰色关联度寻找到合适的相似历史日。再根据自相关性分析法找出与预测时刻功率相关性最大的几个历史时刻功率,结合历史时刻的温度,辐照度,风速等光伏出力的主要天气影响因素科学合理的确定模型输入因子。最后使用小波神经网络(WNN)创建预测模型,通过相似历史日数据作为训练样本训练小波网络,而后对预测日的出力情况进行逐时刻预测。实例分析表明,该方法具有较高的预测精度,为解决光伏发电系统超短期功率预测提供了一种可行路径。 相似文献
12.
13.
《IEEJ Transactions on Electrical and Electronic Engineering》2018,13(3):350-355
In recent years, Japan has rapidly extended its use of electricity obtained via photovoltaic (PV) generation. When the proportion of PV in the generation mix was small, its unpredictable output fluctuations had little effect on the supply and demand operation. However, as the role of PV in grid supply grows, predicting these fluctuations becomes increasingly necessary to ensure stable and economical operation of the electric power system. In this study, we discuss the current approaches of estimating and forecasting the PV output. © 2018 Institute of Electrical Engineers of Japan. Published by John Wiley & Sons, Inc. 相似文献
14.
光伏发电功率预测对提高光伏电站控制、调度性能以及保证电网的安全稳定运行具有重要意义。提出一种基于相似日和回声状态网络(ESN)的光伏发电功率预测模型。首先运用相关性分析法对光伏发电功率的影响因素进行了深入分析,并筛选出其主要影响因素;再利用主要影响因素的历史气象信息建立气象特征向量,通过计算灰色关联度(GRA)寻找合适的相似日;最后运用ESN创建预测模型,利用相似日历史数据训练ESN,而后对预测日的输出功率进行逐时预测。算例表明,对比传统模型,GRA-ESN模型具有更高的预测精度和更好的可行性。 相似文献
15.
基于储能电池的光伏功率波动平抑策略 总被引:1,自引:0,他引:1
为了平抑光伏发电功率波动,并优化光伏出力特性,在运用小波包分解光伏波动频率特性的基础上,提出了基于2组电池组拓扑结构的电池储能系统(battery energy storage system,BESS)在线运行策略和双BESS的最优容量确定方法。模型中2组BESS工作状态分别为充电和放电状态,当某一电池组电能状态达到满充或满放时,则2组电池同时切换当前的工作状态。基于光伏发电厂实测数据,对所提方案进行了验证,结果表明,所提方案不仅在光伏出力特性上取得了较好的平抑效果,而且在电池特性上,由于采用双BESS,很大程度上降低了BESS充放电次数,提高了储能系统利用效率。 相似文献