共查询到20条相似文献,搜索用时 53 毫秒
1.
2.
3.
基于相似日和CAPSO-SNN的光伏发电功率预测 总被引:3,自引:0,他引:3
针对光伏发电功率预测精度不高的问题,提出一种基于相似日和云自适应粒子群优化(CAPSO)算法优化Spiking神经网络(SNN)的发电功率预测模型。考虑到季节类型、天气类型和气象等主要影响因素,提出以综合相似度指标进行相似日选取;以SNN强大的计算能力和其善于处理时间序列问题的特点为基础,结合CAPSO算法搜索的随机性和稳定性优化SNN的多突触连接权值,减少对权值的约束,提高算法的收敛精度。根据某光伏电站的实测功率数据对所提模型进行测试和评估,结果表明,该模型比传统预测模型具有更高的预测精度和更好的适用性。 相似文献
4.
准确预测光伏发电功率有利于并网后电网调度管理,现阶段光伏发电功率预测存在精度较低和对不同天气类型的适应性弱的问题。探索了一种相似日与免疫遗传神经网络(IGA-BP)结合的预测方法:基于天气类型、温度及风速,结合灰色关联度和余弦相似度指标构建气象相似日判别模型;以相似日气象特征向量为输入,建立IGA-BP功率预测模型。利用实测数据对比分析所提IGA-BP模型与GA-BP、BP模型的预测精度,结果为:在不同天气类型下IGA-BP模型具有较高精度,其RMSE平均值为14.142%,TIC平均值为0.017 58,均优于其他对比模型。表明IGA-BP模型能够提高功率预测精度,且具有较高的适应性。 相似文献
5.
6.
7.
光伏电站输出功率受多种外界环境因素影响显著,存在非线性、波动大等缺点。针对这一问题,提出改进的深度置信网络(Deep Belief Network,DBN)的方法。首先利用遗传算法(Genetic Algorithm,GA)为DBN神经网络选取最优的初始权值;其次利用灰色关联度法选择与预测日气象特征相似度高的日期,将这些日期的天气数据和历史发电功率作为训练样本训练DBN神经网络,建立短期光伏预测模型;最后通过仿真算例分析验证了该方法对传统DBN模型预测准确度的提升,且具有一定的可行性。 相似文献
8.
9.
10.
为了增强光伏并网的稳定性,提高光伏发电功率预测精度,提出一种基于相似日聚类、群分解(swarm decomposition, SWD)和MBI-PBI-ResNet深度学习网络模型的光伏发电功率超短期预测方法。首先,使用快速傅里叶变换(fast fourier transform, FFT)提取太阳辐照度的期望频率,将其作为聚类特征向量,并根据此聚类特征向量采用自适应仿射传播聚类(adaptive affinity propagation clustering, AdAP)实现相似日聚类。其次,对每一类相似日分别使用群分解算法进行分解,以提取原始数据的多尺度波动规律特征。最后,利用MBI-PBI-ResNet来实现对天气环境多变量关联影响下的时序特征挖掘以及对多尺度分量的局部波形空间特征和长时间依赖时序特征的同时挖掘,并对不同类型特征进行综合集成来实现光伏发电功率超短期预测。研究结果表明:所提方法在光伏发电功率超短期预测领域相较于其他深度学习方法预测精度提高了3%以上,说明此方法在光伏发电功率超短期预测领域具有较高的预测精度和较强的泛化能力。 相似文献
11.
为了提高光伏发电功率预测精度,根据不同天气类型下光伏输出功率特点,确定光伏发电功率预测模型的输入量。针对狼群算法(wolf pack algorithm,WPA)缺陷,对狼群游走位置和奔袭步长进行改进,得到改进狼群算法(improved wolf pack algorithm,IWPA),并通过IWPA对最小二乘支持向量机(least squares support vector machine,lSSVM)进行优化,建立了考虑天气类型和相似日的IWPA-LSSVM光伏发电功率预测模型。采用不同天气类型下的光伏发电功率数据进行仿真,结果表明:无论是晴天、多云还是阴雨天气,所提方法预测精度更高,回归拟合时的误差波动更小。 相似文献
12.
13.
14.
光伏发电的随机性和不确定性是制约光伏发展的主要原因。为了提高短期光伏发电功率预测精度,提出了一种考虑天气类型和历史相似日的短期光伏输出功率预测方法。针对不同季节和天气类型划分历史数据,根据灰色关联度计算结果确定相似日。采用混沌初始化、控制因子非线性调整和莱维飞行等策略对斑点鬣狗优化(spotted hyena optimizer)算法进行改进,采用改进斑点鬣狗算法(improved spotted hyena optimizer)对核极限学习机进行优化,建立基于改进斑点鬣狗算法优化(kernel extreme learning machine,KELM)的短期光伏输出功率预测模型。利用实际光伏电站监测数据进行仿真分析,结果表明,基于ISHO-KELM的短期光伏输出功率预测模型能够降低光伏输出功率预测过程中的波动性,提高预测精度,验证了所提光伏预测方法的正确性和实用性。 相似文献
15.
针对区域风、光电站群的功率预测,由于各站建站时间不同、单站预报精度残次不齐,导致传统的单站功率累加法预测精度和运行效率不高的问题,采用基于机器学习的二分K均值聚类算法分别对区域内的风电场和光伏电站群进行合理划分,结合区域内各电站历史功率数据及区域总历史功率数据的相关性,选取出各区域的代表电站。在对数值预报要素进行优化订正后,采用BP神经网络法建立基于风电场和光伏电站集群划分的短期功率预测框架模型。结果表明:采用该方法的集群式风电和光伏短期功率预测准确率高于或接近于传统单站累加的预测精度,且该方法在保证预测精度的同时,能够显著提高建模效率。 相似文献
16.
17.
18.
19.