首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Single-phase polycrystalline dual-element-filled skutterudites BaxCeyCo4Sb12 (0 < x < 0.4, 0 < y < 0.1) are synthesized by the melting–quenching–annealing and spark plasma sintering methods. The electrical conductivity, Seebeck coefficient, thermal conductivity and low-temperature Hall data of these compounds are reported. Our results suggest that there is essentially no difference in electrical transport properties between the dual-element-filled BaxCeyCo4Sb12 and single-element-filled BayCo4Sb12 systems. The Ba–Ce co-filling is more effective in lattice thermal conductivity reduction than Ba single filling in the temperature range of 300–850 K. Very low lattice thermal conductivity values less than 2.0 W m?1 K?1 are obtained at room temperature. Consequently, enhanced thermoelectric figure of merits (ZT) for these dual-element-filled CoSb3 skutterudites are achieved at elevated temperatures, in particular ZT = 1.26 at 850 K for Ba0.18Ce0.05Co4Sb12.02.  相似文献   

2.
Spinodal decomposition is an ideal mechanism for producing bulk nanostructured materials with promising thermoelectric (TE) performance. In this contribution, the phase separation and TE properties of PbTe-PbS samples are investigated. Phase separation driven by spinodal decomposition is observed in PbTe0.4S0.6, PbTe0.5S0.5, PbTe0.6S0.4 and (PbTe0.9S0.1)1?x(Ag2Te)x with x = 0, 0.01 and 0.03. The addition of Ag2Te leads to a deterioration in electrical transport properties at low temperature but to a significantly enhanced higher-temperature power factor of the Ag2Te-doped PbTe0.9S0.1 sample. The very low thermal conductivity of the Ag2Te-doped sample is attributed to the doping effect of Ag2Te, the precipitated Ag2Te, and the nanoscale phase segregation driven by spinodal decomposition. In particular, the spinodal decomposition produces finely dispersed PbTe-rich and PbS-rich phases with solute atoms, coherent or semicoherent interfaces, lattice bending, and other lattice defects, which contribute to the phonon scattering and minimize the thermal conductivity. The highest TE figure of merit, ZT, is ~1.2 at 773 K for the sample with x = 0.03, and even larger ZT values at higher temperature might be expected based on its tendency to increase with the temperature.  相似文献   

3.
Since the vibration modes of the pnicogen rings in CoSb3-based skutterudites fall within the range of frequencies of heat-carrying phonons, disruption of the rings by doping should have a strong influence on heat transport in this material. To test the premise, single-phase double-doped CoSb2.75Ge0.25?xTex (x = 0.125–0.20) compounds were synthesized by combining melt spinning with a spark plasma sintering method. Following the melt-spinning process, the side of the ribbons contacting the copper drum is featureless and reflects its amorphous nature while the free surface of the ribbons is composed of 30–80 nm grains. After spark plasma processing the average grain size of the bulk samples is about 200 nm. High-resolution transmission electron microscopy images show an in situ nanostructure consisting of circular, 15 nm diameter dots of Te- and Ge-enriched skutterudite phase embedded in the skutterudite matrix. Transport properties were measured from 2 to 800 K as a function of Te and Ge content on the pnicogen (Sb) rings and the results were correlated with the structural data. Double-doping on pnicogen rings with Ge and Te, and using melt-spinning processing, results in binary skutterudite compounds that possess an impressive figure of merit of ZT  1.1 at 750 K.  相似文献   

4.
《Intermetallics》2007,15(9):1202-1207
The thermoelectric properties of Sb-doped Mg2Si (Mg2Si:Sb = 1:x(0.001  x  0.02)) fabricated by spark plasma sintering have been characterized by Hall effect measurements at 300 K and by measurements of electrical resistivity (ρ), Seebeck coefficient (S), and thermal conductivity (κ) between 300 and 900 K. Sb-doped Mg2Si samples are n-type in the measured temperature range. The electron concentration of Sb-doped Mg2Si at 300 K ranges from 2.2 × 1019 for the Sb concentration, where x = 0.001, to 1.5 × 1020 cm−3 for x = 0.02. First-principles calculation revealed that Sb atoms are expected to be primarily located at the Si sites in Mg2Si. The electrical resistivity, Seebeck coefficient, and thermal conductivity are strongly affected by the Sb concentration. The sample x = 0.02 shows a maximum value of the figure of merit ZT, which is 0.56 at 862 K.  相似文献   

5.
Phase relationships of manganese-substituted ruthenium sesquisilicide alloys have been investigated by using X-ray powder diffraction and scanning and transmission electron microscopy. A series of chimney–ladder phases Ru1?xMnxSiy (0.14 ? x ? 0.97, 1.584 ? y ? 1.741) are formed over a wide compositional range between Ru2Si3 and Mn4Si7. The compositions of these chimney–ladder compounds deviate slightly from the composition line connecting Ru2Si3 and Mn4Si7, which corresponds to the ideal composition line satisfying VEC (valence electron counting) = 14 rule. The occurrence of this compositional deviation is discussed in terms of the VEC rule and the atomic packing. The thermoelectric properties of the directionally solidified Ru1?xMnxSiy alloys (0.55 ? x ? 0.90) have also been investigated as a function of the Mn content and temperature. The dimensionless figure of merit (ZT) for those alloys with a high Mn content (x ? 0.75) increased with the increase in Mn content. The ZT value for a crystal with x = 0.90 was as high as 0.76 at 874 K.  相似文献   

6.
《Intermetallics》2007,15(2):128-132
Mo(Si1−xAlx)2 compositions (x = 0–0.1) have been prepared by a modified SHS route under uniaxial hydrostatic pressure. Oxidation studies carried out by thermal analysis and sheet resistivity indicate an improvement in the low temperature (700–900 K) oxidation resistance with increasing aluminum addition. Dilatometric results show a decrease in the α value up to x = 0.05 substitution. With the aluminum substitution, both thermal expansion coefficient and thermal conductivity show decrease in their values except in the biphasic region. The x = 0.05 composition containing both C11b and C40 phases is a promising material for high temperature thermal barrier coating as it shows higher oxidation resistance and a similar K/α value as compared to pure MoSi2.  相似文献   

7.
Polycrystalline Bi1 ? xSbx (x = 0.10, 0.12 and 0.15) semiconducting alloys were synthesized by mechanical alloying in order to achieve homogeneous thermoelectric materials with improved mechanical strength. The homogeneity of the powder samples were repeatedly checked by X-ray diffraction and scanning electron microscopy to standardize the milling conditions. The best possible homogenized material was developed with the milling conditions of BPR 30:1, ball diameter 30 mm, 400 rpm and milling time of 15 h. The electrical resistivity, thermoelectric power and thermal conductivity were measured in the temperature range 300–500 K. It was found through these experiments that the composition with x = 0.12 behaved in a normal semiconducting way, whereas the other two compositions (x = 0.10 and 0.15) showed degenerate semiconductor behaviour. These features have been qualitatively explained from the band structure and interband scattering mechanisms.  相似文献   

8.
FeSb2Te, a ternary derivative of binary CoSb3, displays anomalous electrical and thermal transport properties because of considerable modifications in the band structure induced by Fe and significant mixed valence state (namely Fe2+ and Fe3+) scattering of phonons. The substitution of Te for Sb generates more holes without notably affecting the band structure, while markedly improving the electrical conductivity and retaining a high Seebeck coefficient due to the enhanced density of states, thereby leading to dramatically increased power factors. Furthermore, the heat carrying phonons are strongly scattered with increasing x value because of the formation of solid solutions between two end members: □FeSb2Te and □FeSb3 (where □ can be viewed as a vacancy). Consequently, high thermoelectric figures of merit were achieved in the FeSb2+xTe1?x compounds, with the largest ZT value reaching ~0.65 for the sample with x = 0.2. This is the highest value among all p-type unfilled skutterudites and is comparable with some filled compositions. Prospects for further improving the performance of p-type FeSb2Te-based skutterudites are discussed.  相似文献   

9.
Skutterudites Fe0.2Co3.8Sb12?xTex (x = 0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6) were synthesized by induction melting at 1273 K, followed by annealing at 923 K for 144 h. X-ray powder diffraction and electron microprobe analysis confirmed the presence of the skutterudite phase as the main phase. The temperature-dependent transport properties were measured for all the samples from 300 to 818 K. A positive Seebeck coefficient (holes are majority carriers) was obtained in Fe0.2Co3.8Sb12 in the whole temperature range. Thermally excited carriers changed from n-type to p-type in Fe0.2Co3.8Sb11.9Te0.1 at 570 K, while in all the other samples, Fe0.2Co3.8Sb12?xTex (x = 0.2, 0.3, 0.4, 0.5, 0.6) exhibited negative Seebeck coefficients in the entire temperature range measured. Whereas for the alloys up to x = 0.2 (Fe0.2Co3.8Sb11.8Te0.2) the electrical resistivity decreased by charge compensation, it increased for x > 0.2 with an increase in Te content as a result of an increase in the electron concentration. The thermal conductivity decreased with Te substitution owing to carrier–phonon scattering and point defect scattering. The maximum dimensionless thermoelectric figure of merit, ZT = 1.04 at 818 K, was obtained with an optimized Te content for Fe0.2Co3.8Sb11.5Te0.5 and a carrier concentration of ~n = 3.0 × 1020 cm?3 at room temperature. Thermal expansion (α = 8.8 × 10?6 K?1), as measured for Fe0.2Co3.8Sb11.5Te0.5, compared well with that of undoped Co4Sb12. A further increase in the thermoelectric figure of merit up to ZT = 1.3 at 820 K was achieved for Fe0.2Co3.8Sb11.5Te0.5, applying severe plastic deformation in terms of a high-pressure torsion process.  相似文献   

10.
Half-Heusler thermoelectric materials Hf1?xZrxNiSn1?ySby (x = 0, 0.25, 0.4, 0.5; y = 0.02, 0.04, 0.06) have been prepared by levitation melting followed by spark plasma sintering or hot pressing. X-ray diffraction analysis and scanning electron microscopy observation show that single-phased half-Heusler compounds without compositional segregations have been obtained by levitation melting in a time-efficient manner. A small amount of Sb doping can improve the electrical power factor but undesirably increases the thermal conductivity due to the increased carrier thermal conductivity. The isoelectronic substitution of Zr for Hf substantially decreased the lattice thermal conductivity. A state-of-the-art ZT value of 1.0 has been attained at 1000 K for the levitation-melted and spark-plasma-sintered Hf0.6Zr0.4NiSn0.98Sb0.02, which is one of the highest achieved ZT values for half-Heusler thermoelectric alloys.  相似文献   

11.
P-type compounds Cu2GaxSn1 ? xSe3 (x = 0.025, 0.05, 0.075) with a diamond-like structure were consolidated using hot pressing sintering (HP) and spark plasma sintering (SPS) techniques. High-temperature thermoelectric properties as well as low-temperature Hall data are reported. Microstructural analysis shows that the distribution of Ga is homogeneous in the samples sintered by HP but inhomogeneous in the samples sintered by SPS, even with an electrically isolating and thermally conducting BN layer during the sintering. The Seebeck coefficients of the samples sintered by HP and SPS show similar dependence on the carrier concentration and are insensitive to the composition inhomogeneity. In contrast, the composition inhomogeneity results in lower carrier mobility and thus lower electrical conductivity in the samples sintered by SPS than those sintered by HP. Lattice thermal conductivity is further reduced through Ga doping; however, this effect is weakened by the inhomogeneous distribution of Ga. Due to their larger carrier mobility and lower lattice thermal conductivity, the samples sintered by HP exhibit 15–35% higher thermoelectric figure of merits (ZT) than those SPS samples with a high Ga doping level and without the coated BN layer, in which the composition homogeneity is worse. A ZT value of 0.43 is obtained for the HP Cu2Ga0.075Sn0.925Se3 sample at 700 K.  相似文献   

12.
Ce–Yb double-filled skutterudites Ce0.5?yYbyFe1.5Co2.5Sb12 (y = 0.1, 0.2, 0.4 and 0.5) were synthesized by a melting method with subsequent annealing. The thermal conductivity, electrical conductivity and Seebeck coefficient were measured from room temperature up to 773 K. The thermal conductivities of all the double-filled skutterudites were found to be lower than the Yb single-filled skutterudites. An enhancement in the dimensionless thermoelectric figure of merit ZT was also observed in all the double-filled skutterudites as compared to the Yb single-filled skutterudite. Ce0.3Yb0.2Fe1.5Co2.5Sb12 has the highest dimensionless figure of merit ZT of 0.32 at 723 K, which is 55% higher than the Yb single-filled skutterudite at the same temperature.  相似文献   

13.
Half-Heusler compounds: MNiSn (M = Ti, Zr, Hf) are considered as a candidate of environmentally friendly and low-cost thermoelectric (TE) materials. Although the thermomechanical properties are quite important when utilizing the half-Heusler compounds in TE devices, such properties have been scarcely reported. In the present study, we tried to collect the data of the thermal expansion coefficient and the melting temperature (Tm) of MNiSn. The thermal expansion coefficient was evaluated by means of two methods: the dilatometer measurement and the high temperature X-ray diffraction analysis. The Tm was evaluated from the differential thermal analysis. The relationship between the thermal expansion coefficient and the Tm of the half-Heusler compounds was studied.  相似文献   

14.
《Intermetallics》2007,15(11):1466-1470
p-Type (Ga2Te3)x–(Bi0.5Sb1.5Te3)1−x (x = 0–0.2) alloys were prepared by spark plasma sintering technique, and the effect of gallium telluride (Ga2Te3) on the thermoelectric properties was experimentally determined. Measurements have shown that the electrical conductivities of (Ga2Te3)x–(Bi0.5Sb1.5Te3)1−x are improved and thermal conductivities reduced after the introduction of Ga2Te3 in the Bi0.5Sb1.5Te3 alloy without noticeable loss of Seebeck coefficient. The maximum thermoelectric figure of merit ZT of 1.0 is obtained with molar fraction x = 0.1 at 335.5 K, being approximately two times that of the Bi0.5Sb1.5Te3 at the corresponding temperature, thus proving that (Ga2Te3)x–(Bi0.5Sb1.5Te3)1−x (x = 0–0.2) alloys are to be a promising material for application.  相似文献   

15.
《Intermetallics》2007,15(8):1066-1070
We report a series of bulk metallic glass-forming alloys of compositions (Cu45Zr48−xAl7REx, RE = La, Ce, Nd, Gd and 0  x  5 at.%). By using a conventional copper mold sucking method, alloys with diameters ranging from 5 to 10 mm can be readily solidified into an amorphous structure without detectable crystallites. The best glass-forming ability is obtained for the alloys Cu45Zr46Al7RE2. Possible effects of RE addition on the glass-forming ability are discussed. In addition, the compositional effect on mechanical properties of Zr–Cu–Al–Gd alloys is presented.  相似文献   

16.
Ab-initio calculations of the resonant modes and frequencies for a number of possible fillers in p-type RFe3CoSb12 and RFe4Sb12 were carried out. The results indicate that, although the exact values of fillers’ resonant frequencies in p-type skutterudites are somewhat different from those in n-type Co-based skutterudites, the Einstein-like resonant modes of the fillers are similar to those in n-type materials. Experimentally, several pairs of the fillers were selected and double-filled p-type skutterudite compounds RxMyFe3CoSb12 (R, M = Ba, Ce, Nd, and Yb) were successfully synthesized. The reduction in the lattice thermal conductivity was realized by extending the range of resonant frequencies. As a result, enhanced ZT values above unity were achieved in these double-filled p-type skutterudites.  相似文献   

17.
《Intermetallics》2007,15(5-6):814-818
High-strength, heat- and oxidation-resistant low density Ti–Ni–Al intermetallic alloys have recently attracted attention competing with some conventional high temperature structural superalloy such as Ni-based superalloy. In the present study, the mechanical properties of Ti-rich Ni50−xTi50Alx (x = 6,7,8,9) alloys were examined by compression tests at room temperature and at high temperature from 400 °C to 800 °C. X-ray diffraction, scanning electron microscopy as well as microhardness tester were utilized to characterize the microstructure as well as the structural evolution with the increasing Al additions. The systematic analyses of the mechanical behavior were made according to compression test at different temperatures. A yield stress of 1800 MPa and more than 10% of compression strain were achieved at room temperature; and a yield stress of 400 MPa at 800 °C. It is suggested that controlling the shape, the volume percent and the distribution of second phases in the matrix is most important to obtain good mechanical properties in these alloys. The strengthening mechanism of aluminum addition on the mechanical properties was discussed systemically according to the microstructure evolution and solution hardening and precipitation hardening upon Al addition.  相似文献   

18.
The thermal expansion anisotropy of the V5Si3 and T2-phase of the V–Si–B system were determined by high-temperature X-ray diffraction from 298 to 1273 K. Alloys with nominal compositions V62.5Si37.5 (V5Si3 phase) and V63Si12B25 (T2-phase) were prepared from high-purity materials through arc-melting followed by heat-treatment at 1873 K by 24 h, under argon atmosphere. The V5Si3 phase exhibits thermal expansion anisotropy equals to 1.3, with thermal expansion coefficients along the a and c-axis equal to 9.3 × 10?6 K?1 and 11.7 × 10?6 K?1, respectively. Similarly, the thermal expansion anisotropy value of the T2-phase is 0.9 with thermal expansion coefficients equal to 8.8 × 10?6 K?1 and 8.3 × 10?6 K?1, along the a and c-axis respectively. Compared to other isostructural silicides of the 5:3 type and the Ti5Si3 phase, the V5Si3 phase presents lower thermal expansion anisotropy. The T2-phase present in the V–Si–B system exhibits low thermal expansion anisotropy, as the T2-phase of the Mo–Si–B, Nb–Si–B and W–Si–B systems.  相似文献   

19.
《Intermetallics》2007,15(8):1139-1146
Effects of La content on the glass transition and crystallization process of Al94−xNi6Lax (x = 3–9) amorphous alloys were investigated by X-ray diffraction and differential scanning calorimeter. The results show that the thermal stability increases with increasing the La content. The crystallization changes from a two-stage process without glass transition at x = 3–6 to a three-stage one with obvious glass transition at x = 7–9. The first crystallization process results in precipitation of single fcc-Al at x = 3–5, fcc-Al plus metastable phase(s) at x = 6 and 7, and single metastable phase at x = 8 and 9. The first crystallization process at x = 4 and 5 is the growth of quenched-in nuclei, whereas that at x = 6, 7 and 9 is the diffusion-controlled growth with a decreasing, constant and increasing nucleation rate, respectively. The activation energy for the first crystallization process is larger in the eutectic reaction than that in the primary reaction, and is the highest when the number of the products is the most.  相似文献   

20.
Physico-chemical analysis techniques, including X-ray diffraction and Scanning Electron Microscope–Energy Dispersive X-ray Spectroscopy, were employed to construct the isothermal section of the Er–Fe–Al system at 800 °C. At this temperature, the phase diagram is characterized by the formation of five intermediate phases, ErFe12?xAlx with 5  x  8 (ThMn12-type), ErFe1+xAl1?x with ?0.2  x  0.75 (MgZn2-type), ErFe3?xAlx with 0.5 < x  1 (DyFe2Al-type), Er2Fe17?xAlx with 4.74  x  5.7 (TbCu7-type) and Er2Fe17?xAlx with 5.7 < x  9.5 (Th2Zn17-type), seven extensions of binaries into the ternary system; ErFexAl3?x with x < 0.5 (Au3Cu-type), ErFexAl2?x with x  0.68 (MgCu2-type), Er2FexAl1?x with x  0.25 (Co2Si-type), ErFe2?xAlx with x  0.5 (MgCu2-type), ErFe3?xAlx with x  0.5 (Be3Nb-type), Er6Fe23?xAlx with x  8 (Th6Mn23-type), and Er2Fe17?xAlx with x  4.75 (Th2Ni17-type) and one intermetallic compound; the ErFe2Al10 (YbFe2Al10-type).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号