首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
The extension of Miedema's semi-empirical model to ternary systems by means of an energy minimization scheme was implemented to demonstrate a number of physical phenomena associated with select ternary alloys. In order to gain a thermodynamic understanding of glass forming ability of Zr based alloys, a combination of extended Miedema's model and lattice strain energies has been invoked. The extended Miedema approach has also been used to study the phase selection during crystallization for amorphous Zr–Cu–Ni alloys. Also extended Miedema's model was used to illustrate its applicability to study the phase stability of Mo–Nb–Si alloys around M3Si composition (M = Mo, Nb), by predicting the amount of Nb (30 at.%) required to destabilize the structure.  相似文献   

2.
《Acta Materialia》2000,48(8):1741-1751
Experimental results are presented of solidification microstructure length scales including η-phase cell spacing, primary ε secondary dendrite arm spacing, size of nonaligned dendrite of primary ε, and volume fraction of primary ε, as functions of alloy concentration (containing up to 7.37 wt% Cu) and growth velocity (ranging from 0.02 to 4.82 mm/s) in the unidirectional solidification of Zn-rich Zn–Cu peritectic alloys. Intercellular spacing (λ) of two-phase cellular structure decreases with increasing growth velocity (V) such that λV1/2 is constant at a fixed alloy concentration in parametric agreement with the KGT and Hunt–Lu models. The value of λV1/2 varies from 216±10 to 316±55 μm3/2/s1/2 with decrease in alloy concentration from 4.94 to 2.17 wt% Cu. These values are much greater than for normal eutectic systems but comparable with monotectic alloys. Dendritic secondary arm spacing (λ2) of primary ε decreases with increasing V such that λ2V1/3 is constant ranging 14.9±0.9 to 75.6±8.1 μm4/3/s1/3 with increase in alloy concentration (C0) from 2.17 to 7.37 wt% Cu, which is in parametric agreement with predictions of arm-coarsening theory. The volume fraction (fε) of primary ε increases with increasing V for Zn-rich Zn–3.37, 4.94 and 7.37 wt% Cu hyperperitectic alloys. Predictions of the Scheil and Sarreal–Abbaschian models show good agreement with the observed fε for Zn–4.94 wt% Cu at moderate V from 0.19 to 2.64 mm/s, but fail at low V of less than 0.16 mm/s and at high V of greater than 3.54 mm/s. The measured average size, Λ, of nonaligned dendrites of primary ε decreases with increasing V such that ΛV1/2 is constant for a given alloy, increasing from (0.98±0.04)×103 to (7.2±0.7)×103 μm3/2/s1/2 with increase in alloy concentration from 2.17 to 4.94 wt% Cu.  相似文献   

3.
《Acta Materialia》2007,55(14):4799-4806
First-principles supercell calculations based on density functional theory were performed to study the T = 0 K site preference of 3d (Ti–Cu), 4d (Zr–Ag) and 5d (Hf–Au) transition-metal elements in B2 NiAl. By adopting a statistical-mechanical Wagner–Schottky model within the canonical ensemble, the effects of finite temperature on site preference were further considered. The calculations showed that, at all alloy compositions and temperatures, Co, Tc, Ru, Rh, Re, Os, Ir and Pt have a consistent preference for the Ni sublattice, while Ti, Zr, Nb, Hf and Ta have a consistent preference for the Al sublattice. In contrast, the site preference of V, Cr, Mn, Fe, Cu, Mo, Pd, Ag, W and Au was found to depend on both composition and temperature. The present calculated results compare favorably with existing theoretical and experimental studies in the literature.  相似文献   

4.
《Intermetallics》2007,15(1):44-54
The total energies and equilibrium cohesive properties of L12, DO22 and DO23 structures along Al3Ti–Al3Zr and Al3X–Cu3X (X = Ti, Zr) sections are calculated from first principles employing electronic density-functional theory (DFT), ultrasoft pseudopotentials and the generalized gradient approximation. Calculated heats of formation are consistent with a narrow field of stability of the L12 structure at 12.5 at.% Cu for ternary (Al,Cu)0.75Zr0.25 and (Al,Cu)0.75Ti0.25 intermetallics at low temperatures. Experimentally, samples homogenized at 1000 °C establish a more extensive stability field for the L12 phase in quaternary alloys with Cu concentrations ranging from 6.7 to 12.6 at.% Cu. Two L12 phases were observed in as-cast alloys with near equal amounts of Ti and Zr, as well as alloys homogenized at 1000 °C. Good agreement is obtained between calculated and measured values of lattice parameters and elastic moduli. These results demonstrate high accuracy of ab initio calculations for phase stability, lattice parameters and elastic constants in multicomponent trialumide intermetallics.  相似文献   

5.
In the present study we investigate the phase formation and the thermal stability of Cu50Zr50 ? xTix (0  x  10) and (Cu0.5Zr0.5)100 ? xAlx glass-forming alloys. Parameters indicating the glass-forming ability (GFA) are calculated from isochronal and isothermal calorimetric experiments. A high Ti content in the Cu–Zr–Ti alloys causes the precipitation of a metastable ternary Laves phase (C15), which does not form in Cu–Zr–Al. Accompanied with it is a significant drop in the activation energy of crystallization. Also the supercooled liquid region (ΔTx = Tx ? Tg), the reduced glass transition temperature (Trg = Tg/Tliq), and the γ parameter (γ = Tx/(Tg + Tliq)) (Tx: crystallization temperature, Tg: glass transition temperature and Tliq: liquidus temperature) are sensitive to the change in the crystallization sequence. The fragility values calculated are believed to overestimate the GFA of the investigated alloys. Careful selection of the alloy composition enables the targeted precipitation of different crystalline phases.  相似文献   

6.
A shift of the morphotropic phase boundary (MPB) and a superior piezoelectric response are observed in Nb-doped Pb(ZrxTi1?x)O3 (PNZT) thin films epitaxially grown on Nb-doped SrTiO3(1 0 0) (Nb:STO) substrates. X-ray diffraction and Raman spectra characterizations confirm that a phase transition from a tetragonal structure to a rhombohedral structure occurs when the Zr/Ti ratio varies from 20/80 to 80/20. The phenomenological theory and experimental analyses suggest that the MPB of epitaxial PNZT thin films is shifted to the higher Zr/Ti ratio (around 70/30) from the conventional ratio (52/48) due to the misfit compressive stress induced by the substrate. A maximum local effective longitudinal piezoelectric coefficient (d33) up to 307 pm V?1 is observed at a Zr/Ti ratio of 70/30 in the current compositional range, again confirming the shifting of MPB in epitaxial PNZT thin films. These findings offer a new insight for the fabrication of epitaxial PZT thin films at MPB with a superior piezoelectric response.  相似文献   

7.
We present an in situ high-temperature confocal laser microscopy study on the thermal stability of 40 nm thick gold thin films grown on 40 nm Ti, TiOx and ZnO adhesion layers on (0 0 1) Si. In situ observation of the dewetting process was performed over a wide range of set temperatures (400–800 °C) and ramp rates (10–50 °C min?1) for each gold/adhesion layer combination. We found that significant dewetting and subsequent formation of gold islands occurs only at and above 700 °C for all adhesion layers. The dewetting is driven to equilibrium for gold/ZnO compared to gold/Ti and gold/TiOx as confirmed by ex situ X-ray diffraction and scanning electron microscopy characterization. Quantification of the in situ data through stretched exponential kinetic models reveals an underlying apparent activation energy of the dewetting process. This energy barrier for dewetting is higher for gold/Ti and gold/TiOx compared to gold/ZnO, thus confirming the ex situ observations. We rationalize that these apparent activation energies correspond to the underlying thermal stability of each gold/adhesion layer system.  相似文献   

8.
J.Y. Zhang  G. Liu  S.Y. Lei  J.J. Niu  J. Sun 《Acta Materialia》2012,60(20):7183-7196
The microcompression method was used to investigate the compressive plastic flow behavior of nanolayered crystalline/amorphous (C/A) Cu/Cu–Zr micropillars within wide ranges of intrinsic layer thicknesses (h  5–150 nm) and extrinsic sample sizes (350–1425 nm) with the goal of revealing the intrinsic size effect, extrinsic size effect and their interplay on the plastic deformation behavior. The nanolayered C/A micropillars exhibited deformation behaviors of strain-hardening followed by strain-softening that were dependent on the thickness of the layers. At h ? 10 nm, the strain-softening is related to shear deformation that is caused by fractures in the amorphous layers. At h > 10 nm, however, the strain-softening is related to the reduction in dislocation density caused by dislocation absorption. Correspondingly, the deformation mode of the C/A micropillars transitioned from homogeneous-like to shear band type as h decreased to the critical value of ~10 nm, which is indicative of a significant intrinsic size effect. The extrinsic size effect on the plastic deformation also became remarkable when h was less than ~10 nm, and the interplay between the intrinsic and extrinsic size effects leads to an ultrahigh strength of ~4.8 GPa in the C/A micropillars, which is close to the ideal strength of Cu and considerably greater than the ideal strength of the amorphous phase. The underlying strengthening mechanism was discussed, and the transition in deformation mode was quantitatively described by considering the strength discrepancy between the two constituent crystalline and amorphous layers at different length scales.  相似文献   

9.
《Acta Materialia》2007,55(10):3347-3374
A systematic and comprehensive study of cohesive properties of Cu–TM (TM = Ti, Zr, Hf) intermetallics is carried out using a first-principles method. Specifically, the total energies and equilibrium cohesive properties of 95 intermetallics in the Cu–TM (TM = Ti, Zr, Hf) systems are calculated employing electronic density-functional theory (DFT), ultrasoft pseudopotentials and the generalized gradient approximation for the exchange-correlation energy. The intermetallic phases considered in our first-principles investigation are classified as stable, metastable and virtual types. The concentration dependence of the heat of formation (ΔEf) in the Cu–Ti system is only slightly asymmetric, while in the Cu–Zr and Cu–Hf systems they are distinctly asymmetric, being skewed towards the Cu-rich side with a minimum in ΔEf at Cu10TM7. Based on the observed differences between ab initio and calorimetric heat of formation, we conclude that additional careful experiments are needed to validate ab initio alloy energetics. We also note that the calphad model parameters representing alloy energetics vary significantly from one assessment to another in these systems. For the stable intermetallics, the calculated zero-temperature lattice parameters agree to within ±1% of experimental data at ambient temperature. For the stable phases with unit cell-internal degree(s) of freedom, the results of ab initio calculations show a good agreement when such data are available from X-ray and other diffraction results. For intermetallic compounds where no such experimental data are available, we provide optimized unit cell geometries which may be verified in future experiments. For most structures we also provide zero-temperature bulk moduli and their pressure derivatives, as defined by the equation of state. The bonding between Cu and Zr is discussed based on the analyses of density of states and bonding charge densities in Cu5Zr and CuZr.  相似文献   

10.
In this paper we present a potentially fast method for high resolution micro structuring of organic electronics via laser patterning. An investigation of the absorption spectrum in the UV/VIS regime of poly (3,4-ethylene dioxythiophene) poly (styrene-sulfonate) (PEDOT/PSS) has shown that UV-laser radiation should be used for optimal laser ablation of the material. Hence, the ablation characteristics of PEDOT/PSS with two different excimer lasers are compared with each other. The optimal fluence for the ablation of the material has been determined. The lasers used in this study are ArF (λ = 193 nm) and KrF (λ = 248 nm) excimer lasers.  相似文献   

11.
Fe–Pd–Cu thin films are of great interest for applications in magnetic shape memory microsystems due to their increased martensitic transformation temperature. Here we analyse the consequences of Cu addition to Fe–Pd on the binding energy and magnetic properties by a combination of thin film experiments and first-principles calculations. Strained epitaxial growth of Fe70Pd30-xCux with x = 0, 3, 7 is used to freeze intermediate stages during the martensitic transformation. This makes a large range of tetragonal distortion susceptible for analysis, ranging from body-centred cubic to beyond face-centred cubic (1.07 < c/abct < 1.57). We find that Cu enhances the quality of epitaxial growth, while spontaneous polarization and Curie temperature are reduced only moderately, in agreement with our calculations. Beyond c/abct > 1.41 the samples undergo structural relaxations through adaptive nanotwinning. Cu enhances the magnetocrystalline anisotropy constant K1 at room temperature, which reaches a maximum of ?2.4 × 105 J m?3 around c/abct = 1.33. This value exceeds those of binary Fe70Pd30 and the prototype Ni–Mn–Ga magnetic shape memory system. Since K1 represents the maximum driving energy for variant reorientation in magnetic shape memory systems, we conclude that Fe–Pd–Cu alloys offer a promising route towards microactuator applications with significantly improved work output.  相似文献   

12.
The effect of O on the phase relations at 950 °C in Fe–15Cr–1Nb alloys is experimentally investigated. Fe–15Cr–1Nb alloys are oxygenated by subjecting high-purity Fe–15Cr–1Nb to an O atmosphere at 600 °C. Both the high-purity and the oxygenated Fe–15Cr–1Nb alloys are heat treated for up to 500 h at 950 °C, quenched and investigated by scanning electron microscopy, transmission electron microscopy and electron probe microanalysis. The results show that Fe2Nb is in equilibrium with α (Fe, Cr) with 0.29 at.% Nb in solid solution in the pure Fe–15Cr–1Nb alloy. The presence of a small amount of O induces the precipitation of a Fe6Nb6Ox phase with a cubic crystal structure and lattice parameter 1.13 nm, thereby decreasing the Nb in solid solution in α (Fe, Cr) with increasing O content.  相似文献   

13.
《Acta Materialia》2007,55(9):3033-3047
The giant magneto-resistance (GMR) multilayer systems NiFe/Cu and Co/Cu have been studied regarding thermally induced recrystallization. The microstructural reaction takes place during brief annealing at 350–450 °C and is accompanied by a change in the crystallographic orientation from 〈1 1 1〉 to 〈1 0 0〉 wire texture. The reaction may be utilized to produce GMR sensor layers of remarkable thermal stability. It is shown that the crystallographic reorientation is triggered by the minimization of lattice mismatch elastic energy. Although the systems of interest are equivalent in respect of the observed phenomenon, the NixFe(1−x)/Cu system is chosen for a detailed analysis because it allows for precise control of the lattice constant by varying the Fe content in the NixFe(1−x) layer. Moreover, the degree of lattice mismatch exerts a critical influence on the recrystallization probability.  相似文献   

14.
《Acta Materialia》2008,56(13):3044-3052
Creep rates in fine-grained Nb were measured at 600 °C using free-standing Cu/Nb polycrystalline multilayered foils. For specimens with layer thicknesses ranging from 0.5 to 5 μm and Nb grain sizes ranging from 0.43 ± 0.05 to 1.87 ± 0.13 μm, two distinct regimes were observed. At high stresses, the stress dependence, grain size dependence and activation energy for creep are consistent with power-law creep, with an average stress exponent of 3.5. At low stresses, creep rates exhibited a linear dependence on stress and an inverse linear dependence on grain size. A model is presented for a vacancy generation-controlled creep mechanism, whereby deformation rates are controlled by the rate of vacancy generation at or near grain boundaries, not by their diffusion. The proposed model is consistent with experimental observations of stress and grain size dependence, as well as the measured activation energy for creep.  相似文献   

15.
The magnetostriction (λs) and tunneling magnetoresistance (TMR) of two Co/AlOx/Co/IrMn MTJ systems that were deposited on Si(1 0 0) and glass substrate were examined at RT and field-annealing with various thicknesses of AlOx. One structure was a Si(1 0 0)/Ta/Co/AlOx/Co/IrMn/Ta system, and the other was a glass/Co/AlOx/Co/IrMn system. The experimental results reveal that, in the Si(1 0 0)/Ta/Co/AlOx/Co/IrMn/Ta system, the ratio of TMR is maximal under the field-annealing condition, and is optimal at an AlOx thickness of 26 Å as well as in the RT condition. EDS analysis demonstrates that, these results are related to the distribution of Co and O atoms, because the oxidation of AlOx is most extensive at a thickness of 26 Å. In the glass/Co/AlOx/Co/IrMn system, λs does not significantly vary under the RT condition; however, λs is maximized (?20 ppm) by field-annealing at an AlOx thickness of 17 Å. The abundance of Co and O in the system dominates the behavior of λs, according to EDS analysis. Finally, the minimum value of λs and the maximum ratio of TMR are ?8 ppm and 60%, respectively, at an AlOx thickness of 26 Å under the field-annealing condition.  相似文献   

16.
《Acta Materialia》2005,53(13):3703-3711
Amorphous (Ni0.6Nb0.4)100−xZrx (x = 0, 20, 30, 40 and 50 at.%) alloys were prepared by the melt-spinning technique, and the hydrogen permeation through those alloy membranes was examined. The local atomic structure in these alloys was also investigated by radial distribution function (RDF) analysis. Moreover, hydrogen solubility and diffusivity were also measured in order to discuss the mechanism for hydrogen permeation. The permeability of the Ni–Nb–Zr amorphous alloys increases with Zr content and temperature. The maximum hydrogen permeability is 1.59 × 10−8 mol m−1 s−1 Pa−1/2 at 673 K for the (Ni0.6Nb0.4)50Zr50 amorphous alloy. The (Ni0.6Nb0.4)50Zr50 amorphous alloy showed larger hydrogen solubility and diffusivity than the (Ni0.6Nb0.4)70Zr30 amorphous alloy. As the result, the (Ni0.6Nb0.4)50Zr50 amorphous alloy showed higher hydrogen permeability than the (Ni0.6Nb0.4)70Zr30 amorphous alloy at 673 K. The RDF analysis shows that the atomic distance between the Zr atoms increases by hydrogenation. The chemical ordering such that the number of Zr coordinates is much higher than that of Ni and Nb coordinates was found in the (Ni0.6Nb0.4)70Zr30 and (Ni0.6Nb0.4)50Zr50 amorphous alloys. The relation between the amorphous local structure and the permeation was discussed in detail.  相似文献   

17.
The crystallization kinetics of metallic Co43Fe20Ta5.5B31.5 glass has been studied by continuous heating differential scanning calorimetry. The DSC traces have been analyzed in terms of activation energy and kinetic model. It is found that all the DSC traces have a single exothermic peak which is asymmetrical, with a steeper leading edge and a long high temperature tail. The heating rate has a significant influence on the shape of the DSC curve, activation energy and transformation mechanism. The existence of a critical heating rate, βcrit = 20 K min−1, is evident. The activation energy for crystallization are determined as 594.8 and 581.4 KJ mol−1 for the heating rates β = 5–20 K min−1, and 437.7 and 432 KJ mol−1 for the heating rates β = 25–65 K min−1, when using the Kissinger equation and the Ozawa equation, respectively. For the volume fraction crystallized, α, Ec dependence was obtained by the general Ozawa's isoconversional method. Using the Suriñach curve fitting procedure, the kinetics was specified. Namely, the crystallization begins with the Johnson–Mehl–Avrami nucleation-and-growth mode and the mode which has been well described by the normal grain growth kinetic law. These two modes are mutually independent. The proportion between the JMA-like and the NGG-like modes is related to the heating rate. The JMA kinetics is manifested as a rule in the early stages of the crystallization. The JMA exponent, n, initially being larger than 4 and continuously decreases to 1.5 along with the development of crystallization. The NGG-like mode dominates in the advanced stages of the transformation with the NGG exponent, m = 0.5 and is the major and principal kinetic characteristics for heating rate, β > 25 K min−1.  相似文献   

18.
Photoluminescence and electroluminescence of PVK films doped with fac-[ClRe(CO)3(bpy)], bpy = 2,2′-bipyridine, are investigated. Photoluminescence spectra of spin-coated PVK films (λexc = 290 nm) exhibit a broad band centered at 405 nm. As the concentration of dopant increases, the polymer emission is quenched and a band at 555 nm appears (isosbestic point at 475 nm). In OLEDs with ITO/PEDOT:PSS/PVK/butylPBD/Al architecture doped with fac-[ClRe(CO)3(bpy)], the polymer host emission is completely quenched even at the lowest concentration of dopant. The electroluminescence spectra of the devices show that there is an efficient energy transfer from the host to the dopant, which exhibits a very intense emission at 580 nm.  相似文献   

19.
D. Raabe  S. Ohsaki  K. Hono 《Acta Materialia》2009,57(17):5254-5263
We have studied deformation-driven alloying in a Cu–5 at.% Ag–3 at.% Nb in situ composite by transmission electron microscopy and atom probe tomography. In addition to alloying at interfaces, amorphization of nanosized Cu areas was observed after heavy wire drawing (true strain: η = 10.5) at some of the Cu–Nb interfaces. We discuss the alloying in terms of trans-phase dislocation-shuffling and shear banding mechanisms where lattice dislocations penetrate the interfaces between abutting phases. We interpret local amorphization in terms of the thermodynamic destabilization of a Cu–Nb crystalline phase between 35 and 80 at.% Cu due to enforced mixing. Deformation-driven mechanical alloying and amorphization are hence closely associated phenomena.  相似文献   

20.
Two kinds of Y and Al modified silicide coatings on an Nb–Ti–Si based alloy were prepared by pack cementation technique. The microstructure and oxidation behavior of both coatings were studied. Both coatings had a multiple layer structure, but the outer layers were composed of either Y- and Al-doped (Nb,X)Si2 or Y-doped (Nb,X)3Si5Al2 + (Nb,X)Si2 phases, respectively. The former coating could protect the substrate alloy from oxidation at 1250 °C for 100 h, but the latter coating could only endure for less than 20 h. The scale formation mechanisms and microstructural changes of both coatings upon oxidation have been illustrated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号