首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《Acta Materialia》2007,55(9):3089-3102
The deformation mechanisms under tensile loading in a 45 vol.% γ′ polycrystalline nickel-base superalloy have been studied using neutron diffraction at 20 °C, 400 °C, 500 °C, 650 °C and 750 °C with the results interpreted via (self-consistent) polycrystal deformation modelling. The data demonstrate that such experiments are suited to detecting changes of the γ′ slip mode from {1 1 1} to {1 0 0} with increasing temperature. Between room temperature and 500 °C there is load transfer from γ′ to γ, indicating that γ′ is the softer phase. At higher temperatures, opposite load transfer is observed indicating that the γ matrix is softer. At 400 °C and 500 °C, an instantaneous yielding increment of about 2% was observed, after an initial strain of 1.5%. This instantaneous straining coincided with zero lattice misfit between γ and γ′ in the axial direction. Predicted and experimental results of the elastic strain response of the two phases and different grain families showed good agreement at elevated temperatures, while only qualitative agreement was found at 20 °C.  相似文献   

2.
《Acta Materialia》2008,56(15):4102-4113
Neutron diffraction was used to monitor elastic strains during in situ tension testing of a directionally solidified (DS) superalloy at 900 °C. Changes in misfit and thermal expansion coefficients of individual phases were obtained. In the γ phase, it is demonstrated that elastic strains saturate at 350 MPa, which is well below the yield strength of the alloy. This is interpreted as the onset of dislocation glide through less stressed vertical channels. The critical resolved shear stress (CRSS) of γ is found to be 143 ± 11 MPa, in agreement with a calculated CRSS that is dominated by Orowan bowing of dislocations through nanoscale-wide γ channels. This provides confirmation of Orowan bowing in plasticity/creep of the γ phase. Implications of CRSS and misfit in a “threshold stress” for creep and rafting are discussed. The CRSS of γ′ is found to be consistent with pairwise penetration of dislocations into γ′.  相似文献   

3.
Deformation mechanisms under tensile loading at room temperature have been studied in a polycrystalline nickel-based superalloy containing close to 50 vol.% γ′. In order to identify the effect of γ′ particle size on deformation mechanisms, model microstructures with unimodal γ′ size distributions were developed. The investigations were carried out by combining in situ loading experiments using neutron diffraction and two-site elasto-plastic self-consistent plasticity modelling with detailed post-mortem electron microscopy. The microscopy work also includes results for samples strained at 500 °C. During early plastic deformation, the diffraction data demonstrate that γ and γ′ display the same elastic strain response, indicating that at this stage γ′ is cut by dislocations regardless of the γ′ particle size. Scanning electron microscopy studies showed an abundance of shearing processes in all three microstructures, hence supporting the conclusions drawn from the diffraction experiment. As the material is further deformed, elastic load transfer from γ to γ′ was observed in the medium (130 nm) and coarse (230 nm) γ′ microstructures but not in the fine (90 nm) γ′ microstructure. The load transfer can be explained by assuming that Orowan looping becomes an additional operative deformation mode. Transmission electron microscopy confirmed that in the fine γ′ microstructure deformation takes place by strongly coupled dislocations cutting the γ′, while the medium and coarse γ′ microstructures showed additional signs of Orowan looping.  相似文献   

4.
《Acta Materialia》2007,55(7):2509-2518
A NASAIR-100 superalloy single crystal was tested in tension creep at 1000 °C at a stress of 148 MPa, for a time period of 20 h and to a strain of 1.1%. Analysis of the resulting dislocation structures after rafting was completed reveals the frequent presence of all three types of a〈0 1 0〉 dislocations in the γ′ particles. Two of these families experience no resolved forces due to the applied stress. It is proposed that these a〈0 1 0〉 dislocations form as a result of the combination of two dissimilar a/2〈0 1 1〉 dislocations entering from γ channels. The possible driving forces for the movement of these a〈0 1 0〉 dislocations are discussed, and a novel recovery mechanism during creep of rafted microstructures is introduced on the basis of these observations.  相似文献   

5.
The anisotropic mechanical response of single-crystal nickel-based superalloys is simulated. At 1123 K, two uniaxial tensile loading cases are simulated: one along [0 0 1] and another along [1 1 1]. Resulting stress–strain curves, stress distributions, interfacial dislocation structures are analysed. In accordance with experiments, the simulations show an anisotropic yield strength. The applied strain is accommodated by dislocations propagating through matrix channels on octahedral slip systems. The net result appears as slip bands along the cubic directions, even though no cubic slip systems are activated. In the [0 0 1] case, the plastic flow is distributed more or less evenly among the three matrix channels, whereas in the [1 1 1] case it is mainly concentrated in one single channel. Typical zig–zag configurations are observed. The elementary mechanisms controlling their formation are explained. Cross-slip does not play any role there. The hardening anisotropy between both loading cases is related to strong differences between the interfacial dislocation microstructures.  相似文献   

6.
The evolution of orientation distributions of γ and γ′ phases in crept Ni-base single crystal superalloys have been investigated by theoretical calculations with elastic–plastic models and by experiments. As creep deformation proceeds, the crystallographic orientation distributions for both phases are broadened as a result of the waving of the raft structure, which occurs to reduce the total mechanical energy. The broadening of the orientation distribution occurs in such a way that the 0 0 1 pole broadens isotropically while the h k 0 poles broaden preferentially along the 〈0 0 1〉 directions. Since the extent of the broadening increases almost linearly with the number of creep deformation, the measurement of the broadening by X-ray diffraction can be utilized in non-destructive methods to predict the lifetime of Ni-base superalloys.  相似文献   

7.
《Acta Materialia》2008,56(7):1570-1576
The authors have previously reported an estimate of the energy associated with the inhibition effect of γ′ martensite after β  β′ + γ′ cycling in CuAlNi single crystals. In this paper, a microscopic model is proposed to explain the γ′ inhibition, related to the localized interaction between a dislocation array and the twinned γ′ structure. Dislocations with Burgers vector [1 0 0]β and line direction [1 1 1]β in an isotropic β matrix are considered. The model takes into account the interaction between the martensitic stress-free transformation strains and the stress field created by the dislocation arrays. It is shown that the interaction is different for each twin-related variant in the γ′ martensite. The energy necessary to maintain the right volume relationship of the twinned γ′ variants to produce an undistorted β/γ′ habit plane is defined as the inhibition energy. A value of around 12 J mol−1 was obtained, which is in reasonable agreement with experimental results.  相似文献   

8.
Creep behaviour of a new cast air-hardenable intermetallic Ti–46Al–8Ta (at.%) alloy was investigated. Constant load tensile creep tests were performed at initial applied stresses ranging from 200 to 400 MPa in the temperature range from 973 to 1073 K. The minimum creep rate is found to depend strongly on the applied stress and temperature. The power law stress exponent of the minimum creep rate is n = 5.8 and the apparent activation energy for creep is calculated to be Qa = (382.9 ± 14.5) kJ/mol. The kinetics of creep deformation of the specimens tested to a minimum creep rate (creep deformation about 2%) is suggested to be controlled by non-conservative motion of dislocations in the γ(TiAl) matrix. Besides dislocation mechanisms, deformation twinning contributes significantly to overall measured strains in the specimens tested to fracture. The initial γ(TiAl) + α2(Ti3Al) microstructure of the creep specimens is unstable and transforms to the γ + α2 + τ type during creep. The particles of the τ phase are preferentially formed along the grain and lamellar colony boundaries.  相似文献   

9.
《Acta Materialia》2008,56(16):4349-4357
The effect of HIP’ping on plastic anisotropy of a Ni-based superalloy was studied. The orientation dependence of tensile properties was evaluated experimentally at room temperature at a nominal strain rate of 10−3 s−1. The results indicate that HIP’ping eliminates the non-Schmid effect by increasing the strength of the 〈1 1 1〉 loaded samples. This phenomenon is attributed to the influence of stress fields of pores and eutectic pools on the yielding behavior of the 〈1 1 1〉 loaded samples, whose deformation is confined to the γ-channels. When deformation takes place by the shearing of γ′-particles, the softening effect dominates and the presence of discontinuities has less or no effect on the deformation path. A new plastic anisotropy was discovered in this work. It is shown that the tensile properties along the primary dendrite growth ([0 0 1] orientation) is significantly different than along the secondary dendrite growth direction ([1 0 0] orientation).  相似文献   

10.
《Intermetallics》2007,15(5-6):757-766
In the nickel-based superalloy PWA1480, 5–10-nm diameter γ precipitates form during heat treatment at 871 °C within the primary cuboidal γ′ precipitates that formed at high temperature (1079 °C). The stability of these γ precipitates during extended aging at 871 °C was investigated by atom probe tomography, computational thermodynamics, and diffusion-controlled growth kinetic modeling. The results show that these γ precipitates are not in thermodynamic equilibrium in the alloy and dissolve during extended aging. Thermodynamic and kinetic calculations indicate that the formation of these non-equilibrium precipitates is related to local concentration fluctuations in the primary γ′ phase that developed during diffusion-controlled growth of γ′ at high temperature.  相似文献   

11.
The deformation mechanisms and associated microstructure changes during tensile loading of an annealed twinning-induced plasticity steel with chemical composition Fe–20Mn–3Si–3Al–0.045C (wt.%) were systematically investigated using in situ time-of-flight neutron diffraction in combination with post mortem transmission electron microscopy (TEM). The initial microstructure of the investigated alloy consists of equiaxed γ grains with the initial α′-phase of ~7% in volume. In addition to dislocation slip, twinning and two types of martensitic transformations from the austenite to α′- and ε-martensites were observed as the main deformation modes during the tensile deformation. In situ neutron diffraction provides a powerful tool for establishing the deformation mode map for elucidating the role of different deformation modes in different strain regions. The critical stress is 520 MPa for the martensitic transformation from austenite to α′-martensite, whereas a higher stress (>600 MPa) is required for actuating the deformation twin and/or the martensitic transformation from austenite to ε-martensite. Both ε- and α′-martensites act as hard phases, whereas mechanical twinning contributes to both the strength and the ductility of the studied steel. TEM observations confirmed that the twinning process was facilitated by the parent grains oriented with 〈1 1 1〉 or 〈1 1 0〉 parallel to the loading direction. The nucleation and growth of twins are attributed to the pole and self-generation formation mechanisms, as well as the stair-rod cross-slip mechanism.  相似文献   

12.
《Acta Materialia》2008,56(15):3786-3790
A condition for destabilizing the raft structure has been deduced from elastic energy calculations with the concept of “effective eigenstrain”, where the effect of creep deformation is included in addition to the lattice mismatch. The calculations indicate that the 0 0 1 raft structure is stabilized by a small amount of creep deformation but becomes unstable when the creep strain in the γ phase exceeds the magnitude required to fully relax the lattice mismatch. The excess creep strain is required to produce an internal elastic field that suppresses further creep deformation, and has to be introduced in the primary creep stage. Via the instability of the 0 0 1 raft structure, the raft structure gradually turns into a wavy one in the second creep stage before its collapse.  相似文献   

13.
《Acta Materialia》2008,56(6):1288-1297
The high-temperature strength and deformation behavior of γ/γ′ two-phase Co–Al–W-base alloys have been studied with polycrystalline and single-crystal materials. The ternary, quaternary and higher-order alloys containing Ta, Cr and/or Re exhibit flow stress anomalies above 873 K due to slip of pairs of 1/2〈1 1 0〉 superpartial dislocations on {0 0 1} planes, in addition to {1 1 1} planes, in the γ′ precipitates. Compression tests on the single-crystal specimens reveal a true anomalous peak temperature of 1073 K for both ternary and Ta-containing quaternary alloys. Above the peak, the ternary alloy exhibits a rapid decrease in strength with temperature, as 1/2〈1 1 0〉 dislocations bypass the γ′ precipitates without significant shearing. Conversely, the Ta-containing quaternary alloy sustains strength to higher temperatures due to the activation of 1/3〈1 1 2〉 partial dislocation slip that introduces a high density of stacking faults in the γ′ precipitates.  相似文献   

14.
High temperature deformation behaviors of a high Nb containing TiAl alloy   总被引:1,自引:0,他引:1  
《Intermetallics》2007,15(5-6):668-674
In the present paper, high temperature tensile and creep behaviors of Ti–45Al–9(Nb,W,B,Y) alloy with duplex (DP) microstructure were investigated. In addition to tensile tests at 815 °C and a strain rate range of 1 × 10−4 s−1−1 × 10−3 s−1 and tensile, creep tests at 760 °C and 815 °C under the stress of 180 MPa, the microstructure evolutions during tensile and creep tests were studied. The results show that high temperature high Nb containing TiAl alloy with DP microstructure has a good balance between ductility and strength and intermediate creep resistance. The tensile properties have the strain rate dependence, and ultimate tensile strength (UTS) and yield strength (YS) vs. strain rate obey a single-logarithm linear relationship. Minimum creep rate is affected by the test temperature and stress. Using loading change experiment a stress exponent of 4.3 is determined. DP microstructure is unstable after long-term exposure at high temperatures, and the spheroidization of lamella and recrystallization along grain boundaries occur during the high temperature deformation. It is assumed that the diffusion-assisted climb of dislocations might be the controlling mechanism at the minimum creep rate stage.  相似文献   

15.
《Intermetallics》2007,15(5-6):675-678
In order to clarify the behaviours of thermomechanical fatigue (TMF) of a third generation γ-TiAl based alloy, the influence of related microstructural instability during TMF process on stress–strain response, fatigue life and fracture way under in-phase (IP) and out-of-phase (OP) loading mode was investigated. Cyclic softening at high temperature (>700 °C) arises from the dissolution of α2 lamellae and recrystallization of γ phase. Cyclic hardening at low temperature (<550 °C) is caused by strong interaction between dislocations. As temperature increases, the mean stress and remained plastic strain range increase, leading to severe TMF damage. Owing to the formation of superfine γ grains in IP condition, a superimposed effect of creep and fatigue damage contributes to the TMF failure. OP loading mode brings about the coarsening of primary equiaxed γ grains. Fatigue damage displays the intergranular fracture and transgranular cleavage fracture ways of coarse γ grains.  相似文献   

16.
In situ neutron diffraction studies are carried out to characterize the micromechanical deformation occurring during tensile creep of a typical single-crystal nickel-based superalloy, CMSX-4. The loading responses of the matrix γ phase and the precipitate γ′ are distinct. Moreover, the behaviour in the tertiary creep regime (in which the γ′ phase remains intact) is qualitatively different from that in the primary creep regime (when γ′ is sheared). In tertiary creep, initial deformation of the matrix leads to a release of misfit between the phases in the (1 0 0), resulting in elastic compression of the γ in the loading direction. The load state then remains fairly constant during creep. During the initial stages of primary creep, elastic compression of the γ phase is observed until at around 2–4% creep strain this compression stabilizes as the (1 0 0) misfit is released. This is the point at which γ′ shearing is thought to begin. Subsequently, the load in the γ increases by around 200 MPa until a maximum is reached at around 8% creep strain. This load is then suddenly released, which may be due to the release of back-stress.  相似文献   

17.
《Acta Materialia》2004,52(9):2577-2589
On the basis of microstructural observation of 1/2[1 1 0]-type jogged-screw dislocations, it has been previously proposed that the creep deformation mechanism in equiaxed γ-Ti–48Al alloys is controlled by the climb of the jogs on these dislocations. This is validated by predictions from a creep model based on these observations. However, several assumptions made in the model were not fully substantiated by experiment or theory. The aim of this study is to verify and validate the parameters and functional dependencies assumed in the model. In addition, the original solution has been reformulated to take into account the finite height of the moving jog. The substructural model parameters have been further investigated in light of this reformulation. The stress dependence of dislocation density, jog spacing and jog height has been evaluated via simulations, analytical modeling and experimental observations. Combining all of these parameters and dependencies in a reformulated model leads to an excellent prediction of creep rates and stress exponents.  相似文献   

18.
《Intermetallics》2000,8(8):903-913
The evolution of the microstructure of a (β/γ ′) Ni–32 at.% Al–5 at.% Fe alloy during annealing has been studied by electron microscopy and X-ray diffraction. Annealing at 800°C and 1100°C causes a reverse martensitic transformation, L10→B2 (β), and a B2→L12 ′) phase transformation. The lower annealing temperature leads to a higher volume fraction of the γ ′-phase but a smaller size of the γ ′-particles. The kinetic laws of the coarsening and of the increase in the volume fraction of the γ ′-phase are discussed. The orientation relationships between the β and γ ′ phases appeared to be mainly of Nishiyama–Wassermann and Bain types after 800°C annealing, while Kurdjumov–Sachs and Bain orientation relationships were predominant in the alloys annealed at 1100°C. A strong correlation between the volume fraction of the γ ′-phase and the tensile characteristics of the alloy has been established.  相似文献   

19.
Single crystal specimens of YZn (B2) were tested in tension at room temperature. Specimens with a [1 0 1] tensile axis orientation exhibited {0 1 1}〈1 0 0〉 primary slip and an ultimate tensile strength of 365 MPa at 3.7% elongation. Specimens with [0 0 1] and [1 1 1] tensile axis orientations showed no slip lines and fractured at a stress of 180 MPa at 3.3% and 130 MPa at 2.9% elongation, respectively. Transmission electron microscopy (TEM) examination of the Burger’s vector of dislocations in tensile tested specimens revealed 〈1 0 0〉-type dislocations. TEM analysis suggested that a secondary slip system, {0 0 1}〈1 0 0〉, may be active. Banded features with a {0 2 1} orientation were observed in deformed YZn; these may be slip traces produced by the cross-slip of 〈1 0 0〉 dislocations. Acting together, {0 1 1}〈1 0 0〉 and {0 0 1}〈1 0 0〉 slip provide only three independent slip systems, and no extra independent systems are provided by the cross-slip. This finding is consistent with the low ductility of YZn.  相似文献   

20.
The effects of a 2.0 at.% addition of Ta to a model Ni–10.0Al–8.5Cr (at.%) superalloy aged at 1073 K are assessed using scanning electron microscopy and atom-probe tomography. The γ′(L12)-precipitate morphology that develops as a result of γ-(fcc)matrix phase decomposition is found to evolve from a bimodal distribution of spheroidal precipitates, to {0 0 1}-faceted cuboids and parallelepipeds aligned along the elastically soft 〈0 0 1〉-type directions. The phase compositions and the widths of the γ′-precipitate/γ-matrix heterophase interfaces evolve temporally as the Ni–Al–Cr–Ta alloy undergoes quasi-stationary state coarsening after 1 h of aging. Tantalum is observed to partition preferentially to the γ′-precipitate phase, and suppresses the mobility of Ni in the γ-matrix sufficiently to cause an accumulation of Ni on the γ-matrix side of the γ′/γ interface. Additionally, computational modeling, employing Thermo-Calc, Dictra and PrecipiCalc, is employed to elucidate the kinetic pathways that lead to phase decomposition in this concentrated Ni–Al–Cr–Ta alloy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号