首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
Unidirectionally reinforced graphite/copper composites have been fabricated using a pressure infiltration casting procedure. T300 and T650 graphite fibers have been used to reinforce copper and copperchromium alloys. The effects of the chromium level in the copper matrix on the tensile strength, stiffness, and thermal expansion behavior of the composites have been evaluated through tensile and three-point bend testing, and thermal cycling. At the 0.5 wt% alloying level, chromium increases the stiffness and optimizes the thermal expansion behavior of graphite/copper composites. The longitudinal tensile strengths of these composites are above 1606 MPa, whereas the transverse tensile strengths are lower than 40 MPa due to incomplete infiltration during processing. Scanning electron microscopy analyses reveal that the unalloyed copper matrix composites experienced extensive fiber/matrix debonding under tensile loading. The addition of chromium to the copper increases the level of matrix bonding to the graphite fibers, as evidenced by observations of fractured tensile specimens. Auger electron spectroscopy analyses indicate that a chromium carbide phase present at the interface is responsible for the improved bonding.  相似文献   

2.
分别采用3D碳纤维针刺毡为增强体以及聚碳硅烷(PCS)衍生SiC涂层为界面相,通过溶胶-浸渍-干燥-热处理(SIDH)技术制备C/Al2O3复合材料,研究SiC界面涂层对C/Al2O3复合材料力学性能、抗氧化性能和抗热震性能的影响。结果表明,C/Al2O3复合材料的断裂韧性显著优于Al2O3单体陶瓷,引入SiC界面涂层后,尽管断裂功有一定程度下降,但C/Al2O3复合材料的强度得到明显提高;得益于SiC涂层和C纤维之间的强结合,C/SiC/Al2O3复合材料在静态空气中表现出明显优于C/Al2O3复合材料的抗氧化和抗热震性能。  相似文献   

3.
采用ANSYS有限元软件计算涂层法制备的SCS-6 SiC/Ti-6Al-4V复合材料内热残余应力,分析了界面性能对热残余应力的影响。结果表明:较高的热膨胀系数(CTE)导致界面层产生高的应力梯度,使环向残余应力由低热膨胀系数时的压应力转变为较高的热膨胀系数时的拉应力;界面层弹性模量的增加,使得纤维和界面层内径向残余压应力明显增加,但对基体中的残余应力影响并不大;界面层厚度的变化对基体中径向残余应力影响不大,但随着界面层厚度增加,基体中残余应力有所减小。  相似文献   

4.
镀镍石墨粉对铜基石墨复合材料力学性能的影响   总被引:3,自引:2,他引:3  
采用粉末冶金工艺制备铜基石墨复合材料,考察烧结工艺、石墨粉颗粒表面镀镍及强化相对铜基石墨复合材料的力学性能和组织结构的影响,并对材料的组分、显微组织形态结构及断口形貌等进行系统的观察和分析,测试材料的硬度、冲击韧性和在室温、300℃、500℃各温度的压溃强度。结果表明:采用镀镍石墨粉改善了石墨和铜合金基体界面结合状态,界面结合更加牢固紧密,明显提高铜基石墨复合材料的力学性能,室温压溃强度和冲击韧性提高了30%~50%,高温强度提高了35%~60%,而对复合材料的硬度影响不大,复压复烧工艺更有利于发挥镀镍石墨粉的优越性。  相似文献   

5.
《塑性工程学报》2020,(2):154-164
针对单向石墨纤维增强铝合金复合材料(CF/Al复合材料),采用细观力学数值模拟与准静态压缩试验相结合的方法研究了其轴向压缩渐进损伤与断裂力学行为,并分析了纤维体积分数对CF/Al复合材料压缩力学性能的影响。结果表明,基于纤维正六边形排布RVE建立的细观力学有限元模型对CF/Al复合材料轴向准静态压缩变形力学行为的计算结果与实验结果吻合良好。复合材料轴向压缩时首先在界面处发生损伤,界面损伤的累积随后引起局部界面失效并诱发基体合金的损伤,变形后期纤维发生失效并导致复合材料产生轴向45°压缩破坏,压缩断口呈现出界面脱粘和局部纤维断裂共存的微观形貌,表明界面脱粘及其导致的纤维断裂是诱发复合材料轴向压缩失效的主要机理。轴向压缩载荷作用下基体合金塑性变形损伤后不易发生失效,纤维性能是决定复合材料轴向压缩力学性能的主要因素,增加纤维体积分数有利于提高复合材料的轴向压缩弹性模量和极限强度。  相似文献   

6.
AZ91D alloy composites with 1.0% CNTs have been fabricated by a method combined ball milling with stirring casting. The composite was investigated using optical microscopy(OM), X-ray diffraction(XRD), Fourier transform infrared spectroscope (FT-IR), scanning electron microscope (SEM), transmission electron microscope (TEM) and room temperature (RT) tensile test. The results show that CNTs were homogeneously distributed in the matrix and maintained integrated structure. The yield strength and ductility of AZ91D/CNTs composite were improved by 47.2% and 112.2%, respectively, when compared with the AZ91 alloy. The uniform distribution of CNTs and the strong interfacial bonds between CNT and the matrix are dominated to the simultaneous improvement of yield strength and ductility of the composite. In addition, the grain refinement as well as the finer β phase (Mg17Al12) with homogenous distribution in the matrix can also slightly assist to the enhancement of the mechanical properties of the composite.  相似文献   

7.
8.
《Synthetic Metals》2002,128(3):247-251
A series of polydimethylsiloxane (PDMS)/polythiophene (Pth)/carbon fiber (CF) composites was synthesized by electrochemical polymerization using tetrabutylammoniumtetrafluoroborate (TBAFB) as supporting electrolyte and acetonitrile as solvent. Composites were characterized by TGA, SEM, and mechanical tests and conductivity measurements. Conductivities of composites were in the range of 2–5 S/cm. SEM studies show that CF were coated by PDMS/Pth matrix and well oriented in the matrix. In mechanical tests it has been observed that higher percent elongation was obtained by increasing PDMS content whereas tensile strength and modulus of composites increases with increasing CF content.  相似文献   

9.
2%C/MoSi2复合材料的组织结构与性能   总被引:7,自引:1,他引:7  
采用热压烧结工艺制得了2%C/MoSi2(质量分数)复合材料,并测定了材料的显微组织和结构、室温和高温力学性能、耐磨性能以及电阻率。结果:C/MoSi2复合材料由大量的MoSi2、多量的Mo5Si3和少量的β-SiC组成,其硬度Hv为1060,抗弯强度为470MPa,断裂韧性为5.12MPa.m^1/2,800℃的硬度Hv为750,1200℃的抗压强度为450MPa,1400℃的抗压强度为142MPa;在Al2O3和SiC磨盘上表现出优异的耐磨性能,材料的电阻率为349n.m。与纯MoSi2相比,2%C/MoSi2复合材料在硬度、抗弯强度、断裂性、高温抗压强度、弹性模量和耐磨性能等方面都有较大的提高。  相似文献   

10.
采用热压烧结工艺制得了 2 %C/MoSi2 (质量分数 )复合材料 ,并测定了材料的显微组织和结构、室温和高温力学性能、耐磨性能以及电阻率。结果表明 :C/MoSi2 复合材料由大量的MoSi2 、多量的Mo5Si3 和少量的 β SiC组成 ,其硬度Hv为 10 6 0 ,抗弯强度为 470MPa ,断裂韧性为 5 .12MPa·m1/ 2 ,80 0℃的硬度Hv为 75 0 ,12 0 0℃的抗压强度为 45 0MPa ,140 0℃的抗压强度为 142MPa ;在Al2 O3 和SiC磨盘上表现出优异的耐磨性能 ,材料的电阻率为 34 9nΩ·m。与纯MoSi2 相比 ,2 %C/MoSi2 复合材料在硬度、抗弯强度、断裂韧性、高温抗压强度、弹性模量和耐磨性能等方面都有较大的提高。  相似文献   

11.
《Synthetic Metals》1995,73(1):55-61
The magnetic properties of stage-2 CocM1−cCl2 graphite intercalation compounds (GICs) (M = Ni and Mn, 0 ≤ c ≤ 1) and their bulk intercalants, CocM1−cCl2, have been studied by using d.c. magnetic susceptibility. In stage-2 CocM1−cCl2 GIC, the adjacent CocM1−cCl2 layers are separated by two graphite layers. Due to the graphite host effect, demonstrated by decreasing the antiferromagnetic interplanar exchange interaction and island formation in the intercalate layer, the magnetic phase transition of stage-2 CocM1−cCl2 GIC is very different from that of CocM1−cCl2. Stage-2 CocNi1−cCl2 GIC with 0 ≤ c ≤ 1 and stage-2 CocMn1−cCl2 GIC with 0.45 ≤ c ≤ 1 undergo a two-dimensional ferromagnetic phase transition at the critical temperature Tc, while their bulk intercalants undergo a three-dimensional antiferromagnetic phase transition at the Néel temperature TN. The magnetic properties of stage-2 GICs are compared with those of their respective bulk intercalants in the light of the graphite host effect. The magnetic properties of stage-2 CocMn1−cCl2 GIC and CocMn1−cCl2 are also compared with those of stage-2 CocMg1−cCl2 GIC and CocMg1−cCl2.  相似文献   

12.
The surface properties of fully fluorinated samples of natural graphite (FG) and carbon fiber (FCF) were studied by gas chromatography, IR spectroscopy, and static adsorption. It was found that for fluorocarbons, the contributions from the O atom (for ethers) and the OH group (for alcohols) are comparable with the contribution from the methylene unit to the retention parameters, which is typical only of highly homogeneous, hydrophobic, and nonpolar surfaces. Unusual properties of fluorocarbons compared to known hydrophobic adsorbents include weaker adsorption of secondary alcohols than ketones, their dehydrogenation products. An analysis of the retention parameters of isomeric propanols and butanols revealed that the FCF surface is accessible to the adsorption of these molecules, and is mainly formed by planar homogeneous fragments. In contrast, the FG structure is porous; the pore width is comparable with the molecule size, which makes the adsorption equilibrium more difficult to reach. Original Russian Text ? T.M. Roshchina, S.V. Glazkova, N.A. Zubareva, E.A. Tveritinova, A.D. Khrycheva, 2008, published in Zashchita Metallov, 2008, Vol. 44, No. 2, pp. 187–192.  相似文献   

13.
通过搅拌铸造工艺制备体积分数为10%的SiC颗粒增强AZ91镁基复合材料。对复合材料依次进行了固溶、热变形和时效处理,研究了热处理对镁基复合材料组织和性能的影响。结果表明,铸态复合材料经固溶处理后,晶界处分布的大块Mg17Al12相消失,复合材料的强度和伸长率得到显著提高。热变形后,复合材料的晶粒细化,颗粒分布更加均匀,提高了复合材料的力学性能。经时效处理后,复合材料中析出弥散细小的Mg17Al12相,使热变形后复合材料的力学性能得到进一步提高。  相似文献   

14.
The contribution presents investigations regarding the size effects on cutting forces in micro drilling of carbon fiber reinforced plastic composite. Generally, size effect is described as non-linear increase of specific cutting force with decreasing chip thickness. Specific cutting forces are determined by dividing cutting force components by chip area. In a mathematical model, specific cutting force is expressed as a function of the ratio of undeformed chip thickness to cutting edge radius. The coefficients of the model are determined by regression analysis using experimental results. Non-linear increase of specific cutting force is observed when the ratio decreases, especially when the ratio is less than unity.  相似文献   

15.
Two kinds of unidirectional PAN M40 carbon fiber(55%,volume fraction) reinforced 6061Al and 5A06Al composites were fabricated by the squeeze-casting technology and their interface structure and thermal expansion properties were investigated.Results showed that the combination between aluminum alloy and fibers was well in two composites and interface reaction in M40/5A06Al composite was weaker than that in M40/6061Al composite.Coefficients of thermal expansion(CTE) of M40/Al composites varied approximately from(1.45-2.68)×10-6 K-1 to(0.35-1.44)×10-6 K-1 between 20 °C and 450 °C,and decreased slowly with the increase of temperature.In addition,the CTE of M40/6061Al composite was lower than that of M40/5A06Al composite.It was observed that fibers were protruded significantly from the matrix after thermal expansion,which demonstrated the existence of interface sliding between fiber and matrix during the thermal expansion.It was believed that weak interfacial reaction resulted in a higher CTE.It was found that the experimental CTEs were closer to the predicted values by Schapery model.  相似文献   

16.
Particulate reinforced magnesium matrix nanocomposite prepared with semisolid stirring assisted ultrasonic vibration was subjected to extrusion at 350 °C with an extrusion ratio of 12:1. Extrusion of the SiCp/AZ91 nanocomposite induced large scale dynamic recrystallization resulting in a fine matrix microstructure. There were two kinds of zones in the extruded nanocomposite: SiC nanoparticle bands parallel to the extrusion direction and refined-grain zones between the SiC nanoparticle bands. In the SiC nanoparticle bands, there were SiC nanoparticles along the boundaries of refined grains. The distribution of SiC nanoparticles was uniform although some agglomerates of SiC nanoparticles still existed in the SiC nanoparticle bands. The ultimate tensile strength, yield strength and elongation to fracture of the SiCp/AZ91 nanocomposite were simultaneously improved by extrusion. Results from the extruded SiCp/AZ91 nanocomposite tensile testing at different temperatures (75, 125, 175 and 225 °C) revealed an increase of the tensile strength and ductility values compared with the unreinforced and extruded AZ91 alloy.  相似文献   

17.
《Scripta materialia》2002,46(2):169-173
A unidirectional Cu/C composite with 40% T300 carbon fibers was found to have very low CTE, average about 1×10−6 K−1 over the temperature range of 300–1073 K. Dimensional stability of the composite was investigated under thermal cycling between 0.35 and 0.8 of the matrix homologous temperature. Void formation has been identified as the major damage mechanism in the Cu/C composite under thermal cycling  相似文献   

18.
本文选用Ti-6Al-4V钛合金为基体,镀铜碳纤维布为增强相来制备钛合金/碳纤维布复合材料。通过放电等离子烧结法(SPS)对镀铜碳纤维布与钛合金薄片进行叠层烧结,制备钛合金/碳纤维布叠层复合材料,并对其界面形貌、微观组织与力学性能进行表征。结果表明:镀铜碳纤维均匀分布在钛合金/碳纤维布复合材料中,CuTi, Cu和少量的TiC沿着纤维和基体的界面分布。钛合金/碳纤维布复合材料具有比钛合金略高的塑性,同时屈服强度和抗压强度与钛合金相比有了明显的提高。碳纤维表面电镀铜对复合材料界面有着重要的影响:(1)显着降低钛合金/碳纤维布复合材料的烧结温度;(2)提高了碳纤维和钛基体之间的润湿性,改善了界面结合,从而提高了钛合金/碳纤维布复合材料的力学性能;(3)有效地抑制TiC脆性相的产生,与未镀铜的碳纤布增强钛复合复合材料相比,镀铜碳纤维布/钛合金复合材料具有更好的塑性。  相似文献   

19.
提出一种新型的复合材料成形工艺,即热冲压成形,来直接成形复合材料。为了研究复合材料板的成形行为,分析了成形温度对零件的影响,进行了热弯曲和热拉深实验。实验结果表明,编织复合材料板的锁止角为30°,在成形过程中,变形载荷一般小于5 N,并且变形载荷随着温度的升高而降低。成形碳纤维复合材料板的最佳温度是170°C。采用有限元分析软件ABAQUS对模具的温度场分布和复合材料板的变形进行了数值模拟。为了研究碳纤维在成形过程中的运动,采用两节点的三维Truss单元T2D3对纤维进行网格剖分,模拟结果与试验结果相吻合。  相似文献   

20.
Molecular dynamics in the ternary graphite intercalation compounds (GICs) with potassium and methylbenzenes (toluene and o-xylene) have been investigated. It was found that the proton spin-lattice relaxation is determined by two different molecular motions. At low temperatures the relaxation process is monitored by the three-fold methyl group reorientations. At high temperatures the motion is most likely to be the rotation of the phenyl ring around the two-fold axes. The relaxation measurements are discussed in terms of the previously proposed structure model of the ternary GICs with potassium and aromatic hydrocarbons.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号