首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Pickering suspension polymerization was used to prepare magnetic polymer microspheres that have polymer cores enveloped by shells of magnetic nanoparticles. Styrene was emulsified in an aqueous dispersion of Fe3O4 nanoparticles using a high shear. The resultant Pickering oil-in-water (o/w) emulsion stabilized solely by magnetic nanoparticles was easily polymerized at 70 °C without stirring. Fe3O4 nanoparticles act as effective stabilizers during polymerization and as building blocks for creating the organic–inorganic hybrid nanocomposite after polymerization. The fabricated magnetic nanocomposites were characterized by FTIR, XRD, TGA, DSC, GPC, XPS and SEM. The structures of the polymer core and the nanoparticle shell were analyzed. We investigated the effects on the products of the weight of Fe3O4 nanoparticles used to stabilize the original Pickering emulsions. Pickering suspension polymerization provides a new route for the synthesis of a variety of hybrid nanocomposite microspheres with supracolloidal structures.  相似文献   

2.
Developing bio-friendly and degradable Pickering emulsifiers as surfactants to replace traditional surfactants with bio-toxicity is imperative in the food, coating, cosmetics, and pharmaceutical industries. Nanocellulose and chitin can be used directly as an emulsifier to prepare Pickering o/w emulsions. As the concentration of nanoparticles increases, the stability of the emulsion also increases, and an overly large nanoparticle aspect ratio is not conducive to the stabilization of the emulsion. In comparison, nanocellulose-prepared Pickering emulsion has improved stability. Of these, nanocellulose prepared by DES with a molar ratio of 3:1 to LA:CC has been shown to have the best stability when used to equilibrate the oil/water mass ratio of 2/8. The Zeta potential is −38.4 mV, and the size of the droplets is the most uniform. With a mean droplet diameter of 770 nm. This study had certain research significance and reference value for the development of bio-friendly surfactants.  相似文献   

3.
In this article, a facile method for fabrication of core–shell nanocomposite microspheres with polystyrene (PS) as the core and halloysite nanotubes (HNTs) as the shell via Pickering suspension polymerization was introduced. Stable Pickering emulsions of styrene in water were prepared using HNTs without any modification as a particulate emulsifier. The size of the Pickering emulsions varied from 195.7 to 26.7?μm with the water phase volume fraction increasing from 33.3 to 90.9?%. The resulting Pickering emulsions with the water phase volume fraction of above 66.7?% were easily polymerized in situ at 70?°C without stirring. HNTs played an important role during polymerization and effectively acted as building blocks for creating organic–inorganic nanocomposite microspheres after polymerization. The sizes of PS/HNTs microspheres were roughly in accord with that of the corresponding emulsion droplets before polymerization. The effect of the water phase volume fraction on the stability of Pickering emulsions and the morphologies of nanocomposite microspheres was investigated by optical microscopy, confocal laser scanning microscopy, Fourier transform infrared spectroscopy, thermogravimetric analysis, scanning electron microscopy and so on.  相似文献   

4.
Multi‐hollow or hollow polymer particles are of great interest in many fields. Here we successfully fabricate polystyrene microspheres with aqueous cores through w/o/w Pickering emulsion stabilized by modified SiO2 nanoparticles. The final structure and constituents of the microspheres is investigated via SEM, X‐ray photoelectron spectra, and thermo‐gravimetric analysis. The results demonstrate that the size and amount of aqueous cores in the microspheres can be tuned by the original structure of the multiple emulsions: when the volume fraction of inner water is 0.2, the inner structure of the microspheres obtained is porous and each pore is not interconnected; when the volume fraction of inner water is increased to 0.7, the resulting products are hollow microspheres and when 0.3% wt/vol of salt is added to the inner aqueous phase, the inner pores of the resulting microspheres enlarge or even coalesce. The multi‐hollow or hollow polystyrene microspheres with aqueous cores are expected to be candidates for encapsulation in biotechnology. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 39761.  相似文献   

5.
固体纳米颗粒代替传统表面活性剂作为乳化剂稳定的Pickering乳液具有高抗聚结性、环境友好性、成本较低等优点,在多种领域具有广阔应用前景。通过适当刺激精确调控乳液稳定性及构建响应型Pickering乳液的研究引起广泛关注。该文详细综述了多种刺激响应型Pickering乳液的构建、调控及其应用。首先阐述了Pickering乳液的稳定性影响因素和备固体颗粒乳化剂表面改性技术;继而介绍了多种刺激响应性Pickering乳液的响应机理和性能;最后综述了Pickering乳液的应用研究;分析展望了Pickering乳液研究应用中存在的问题和发展前景。  相似文献   

6.
We studied the effects of emulsifiers on the entrapment yields of a hydrophilic material, calcein, in lipid vesicles formed using the multiple emulsion method. The primary emulsion (W1/O) was prepared via sonication while the secondary emulsification that produced the W1/O/W2 multiple emulsions was achieved using the microchannel (MC) emulsification technique. The emulsifiers used in the continuous (W2) phase were Tween® 80, Pluronic® F68, and bovine serum albumin (BSA). Lipid vesicles formed via solvent evaporation of the multiple emulsion droplets had an average diameter of about 180 nm, similar to the size of the water droplets in the primary W1/O emulsions. The entrapment yields of calcein increased with decreasing concentrations of Tween® 80 but decreased with decreasing concentrations of Pluronic® F68 and BSA. The effects of type and concentration of emulsifier were considered in relation to three possible mechanisms: (i) destabilization/solubilization of lipid bilayers by emulsifiers, (ii) reversed-micellar transport of W1 contents from internal to external water phases through the O phase, and (iii) release of inner water (W1) contents into the continuous (W2) phase via the instability of W1/O/W2 and leakage of W1 contents. Using the food grade emulsifier Tween® 80 at a low concentration of about 0.1 or 0.05 wt%, calcein as a model hydrophilic material could be efficiently entrapped (ca. 80%) in homogenously dispersed lipid vesicles.  相似文献   

7.
Polymerization using Pickering emulsion droplets as reaction vessels is being developed to become a powerful tool for fabrication of hybrid polymer particles with supracolloidal structures. In this paper, two kinds of thermo-sensitive hybrid poly(N-isopropylacrylamide) (PNIPAm) microcapsules with supracolloidal structures were successfully prepared from suspension polymerization stabilized by SiO2 nanoparticles based on inverse Pickering emulsion droplets. SiO2 nanoparticles could self-assemble at liquid-liquid interfaces to form stable water-in-oil inverse Pickering emulsion. NIPAm monomers dissolving in suspended aqueous droplets were subsequently polymerized at different temperatures. The hollow microcapsules with SiO2/PNIPAm nanocomposite shells were obtained when the reaction temperature was above the lower critical solution temperature (LCST) of PNIPAm. While the core-shell microcapsules with SiO2 nanoparticles' shells and PNIPAm gel cores were produced when the polymerization was conducted at the temperature lower than LCST using UV light radiation. The supracolloidal structures with different cores could be tuned by simply changing reaction temperature, which was confirmed by confocal laser scanning microscopy and scanning electron microscopy. The interesting properties of both microcapsules were their ability of reversibly swelling during drying/wetting cycles and responsive to temperature stimulus. Such functional microcapsules may find applications in double control release system due to the presence of the supracolloidal structures and thermo-sensitivity.  相似文献   

8.
Influences of process parameters were investigated on the efficiency of encapsulation of bovine serum albumin (BSA) in poly(dl-lactic-co-glycolic acid) (PLGA) nanoparticles produced by w1/o/w2 (water-in-oil-in-water) double emulsion-solvent evaporation method. According to a 5-factorial 3-level Box-Behnken type experimental design aqueous solution of BSA was emulsified in an immiscible organic phase composed of dichloromethane and various quantities of dissolved PLGA to get water-in-oil (w1/o) emulsion. This latter was then dispersed in a second aqueous phase (w2) containing poly-vinyl-alcohol (PVA) surfactant as an emulsifier/stabilising agent. PLGA nanoparticles with encapsulated BSA were obtained by evaporating the dichloromethane from the w1/o droplets. Encapsulation efficiency was determined as the weight ratio of BSA remained in the PLGA nanoparticles relative to the total weight of BSA used in the process. By statistical evaluation of the experimental results an equation was proposed to predict the encapsulation efficiency as a function of five process variables. Two optimization procedures were carried out to increase the efficiency of encapsulation, with and without constraints referring to the required mean particle size. Correlation was found between the latter and the achievable maximal encapsulation efficiency under optimal process conditions.  相似文献   

9.
A continuous process for methacrolein production was constructed by filling w/o Pickering emulsions in a column reactor. Ionic liquid (IL-[HDEA]Ac) with secondary amine was designed to catalyze propionaldehyde condensation with formaldehyde through the Mannich reaction. Emulsion droplets encapsulated with IL aqueous solution were stabilized with modified SiO2 nanoparticles and dispersed in cyclohexane, which could be observed as numerous reactors. The properties of SiO2 stabilizer, such as wettability, surface groups, and the effect on interfacial tension were investigated. The characteristics of emulsion influenced by stabilizer properties and content were systematically studied. The droplet size, IL concentration and liquid hourly space velocity were optimized. The droplets were evaluated at 0.5 hr−1 for 150 hr without IL leakage and obvious activity decreasing, indicating the excellent stability of the emulsion system. The continuous process showed a 1.25-fold enhancement in catalysis efficiency and less equipment compared to batch process.  相似文献   

10.
The aim of this work is to present a facile Pickering emulsion polymerization method for the synthesis of submicron polystyrene/SiO2 core/shell composite particles. The commercial hydrophobic SiO2 nanoparticles were used as stabilizing agent for creating a stable oil‐in‐water emulsion. Although the adsorption of hydrophobic SiO2 nanoparticles in the emulsion system was unfavorable in terms of thermodynamics, by ultrasound treatment, self‐assembly of hydrophobic SiO2 nanoparticles effectively stabilized oil‐in‐water Pickering emulsions during polymerization. Using 3 wt.% SiO2 nanoparticles (based on styrene monomer) and 1:10 volume ratio of styrene monomer:water, the composite particles having average size of 790 nm and relatively narrow particles distribution were produced. With decreasing the volume ratio, smaller composite particles were created. Results from scanning electron microscope revealed that SiO2 nanoparticles were located exclusively at the surface of the polystyrene latex particles. The SiO2 content, determined by thermogravimetric analysis, was 12.6 wt.% in the composite particles. The route reported here may be used for the preparation of other composite nanostructures. POLYM. ENG. SCI., 59:E195–E199, 2019. © 2018 Society of Plastics Engineers  相似文献   

11.
Summary: A method is presented that can produce ordered macroporous alginate membranes and microspheres with a relatively narrow pore size distribution as compared to other existing porous alginate matrix generating procedures. The calcium alginate membranes and microspheres obtained were multiporous, and the pore size could readily be adjusted in the range of 1 to 10 µm by selecting appropriate initial emulsion parameters. A preliminary set of experiments was used to determine a range of conditions suitable for the formation of stable O/W emulsions consinsting of the alginate solution, liquid paraffin and surfactants. The obtained emulsions were characterized by size distribution measurements and optical microscopy. The emulsions were used to form alginate membranes and microspheres with diameters of 150–500 µm. Subsequent work was performed to remove liquid paraffin droplets, the dispersed phase of the emulsion which acted as template in the pore‐generating process, from the final alginate membranes and microspheres. The states of templates in hydrogels and the effect of template removal on the calcium alginate structures were thoroughly investigated.

Porous alginate membranes prepared via emulsion templating method.  相似文献   


12.
Gold nanoparticle/graphene oxide hybrids (AuNP/GO) were easily fabricated by a redox reaction between GO and chloroauric acid without using any additional reductant and then used to stabilize Pickering emulsions. Factors affecting the properties of the emulsions were studied, including the HAuCl4/GO mass ratio used to prepare the AuNP/GO, the oil/water ratio, the AuNP/GO concentration, the pH value, and the type and concentration of electrolytes. The emulsions were more stable when stabilized by AuNP/GO made from HAuCl4/GO mass ratios of 0.375–0.5. High pH values and AuNP/GO concentrations that were too high or too low were unfavorable to the stability of the Pickering emulsions. Adding electrolytes to the systems improved the stability of the Pickering emulsions owing to the reduction of repulsive interactions between AuNP/GO sheets. The AuNP/GO stabilized Pickering emulsions were used to prepare AuNP/GO supported polystyrene (PS) microspheres (AuNP/GO@PS) by polymerizing the Pickering emulsion. The catalytic performance of AuNP/GO@PS for the reduction of 4-nitrophenol was then studied.  相似文献   

13.
We here propose a simple, facile, and effective method to prepare submicron mullite hollow spheres templated from Pickering emulsions. Dual-phase sol consisted of boehmite and silica nanoparticles decorated by pentanoate ion could assemble at water/oil interface irreversibly to form photosensitive Pickering emulsions. The droplets of emulsions could be separated by dilution and formed by photopolymerization to gain hybrid microspheres, which could completely transform to mullite hollow microspheres via binder removal and sintering. It is found that the prepared hollow microspheres possess intact morphology, favorable sphericity, large cavity volume, and bulk density of 0.356 g/cm3. Importantly, the average diameter of mullite hollow spheres obtained via this method could be as low as 0.33–2.31 μm. This steady method is efficient and suitable for various types of inorganic particles, providing an innovative perspective for preparing fine hollow spheres applicable for filtration, drug loading as well as energy storage areas.  相似文献   

14.
Porous ethyl cellulose (EC) microspheres were prepared via a physical method in oil‐in‐water (O/W) emulsions. The morphologies and pore structures of the resulting porous microspheres were investigated by scanning electron microscopy (SEM), mercury porosimeter and spectrometer equipped with an integrating sphere. The increase of EC amount in oil phase will increase the size of the microspheres. All the microspheres possess open macropores in the shell and interconnected pores inside the microspheres by means of phase separation. The saturation of the Ethyl acetate (EA) in external phase has an effect on the morphology of the EC particles obtained. Using EA unsaturated aqueous solution as the external water phase in the emulsion process results in the formation of porous EC particles with irregular shape. The loaded TiO2 nanoparticles uniformly disperse in EC matrix, and slightly deceases the size and volume of interconnected pores inside the microspheres. The addition of TiO2 nanoparticles is also proved to increase the light‐scattering power of the porous EC microspheres. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 40822.  相似文献   

15.
Pickering乳液是指由微纳米固体粒子代替传统表面活性剂作为乳化剂而稳定的乳液,具有较强的稳定性和超高油/水界面,能够为多相界面反应和物质传输提供高效稳定的场所。Pickering乳液的乳滴结构和性质与固体颗粒的尺寸形貌及表面性质密不可分,通过调控固体颗粒本身或表面的性质可以赋予Pickering乳液特定的响应性功能,拓宽其应用领域。本文对近年来不同响应型(磁性、CO2、pH、光、温度等响应型)的Pickering乳液的主要研究成果进行了综述,重点介绍了Pickering乳液的稳定性原理、响应型Pickering乳液的制备方法和结构调控策略,以及近年来Pickering乳液在物质分离提取中的应用研究进展,最后对智能响应型Pickering乳液应用研究的发展趋势进行了展望。  相似文献   

16.
以辛胺为疏水改性剂,采用酰化法制得具有两亲性的海藻酸辛酰胺(ACA)。将ACA与采用修正Stber法制备的氨基二氧化硅(SiO_2-NH_2)纳米粒混合,在超声的作用下制得O/W型Pickering乳液。通过FT-IR,~1H NMR和荧光光谱对ACA的结构和性能进行表征。并采用激光粒度和Zeta电位分析仪、接触角测量仪和光学显微镜探究了ACA,SiO_2-NH_2及其协同水分散体系的胶体性能和相应的Pickering乳液的形貌。结果表明:ACA的取代度为0.29,在0.15 mol/L Na Cl水溶液中的临界聚集浓度(cac)为0.42 g/L,表现出较强的两亲性能。ACA通过静电作用力成功地吸附于SiO_2-NH_2纳米粒上,使水动力学粒径只有155 nm的SiO_2-NH_2纳米粒增长至386 nm,Zeta电位由+22.2 mV转变为-30.7 mV,在水溶液中能够表现出良好的稳定性。吸附于SiO_2-NH_2纳米粒表面的ACA可以抑制无机纳米粒的聚沉,而游离的ACA形成的胶束结构的疏水内腔能够增溶油滴,减少小油滴的聚并。光学显微镜中出现了粒径较大的Pickering乳液液滴和粒径较小的传统乳液液滴共存的现象,当ACA质量浓度在0.5 cac~1.0 cac时,2种乳液共存现象最为显著。  相似文献   

17.
In this work, we describe a novel and simple method for fabricating biocompatible microcapsules. Chitosan colloidal nanoparticle-coated micrometer-sized poly(lactic-co-glycolic acid) (PLGA) microcapsules were fabricated via a combined system of “Pickering-type” emulsion route and solvent volatilization method in the absence of any molecular surfactants. Stable oil-in-water emulsions were prepared using chitosan colloidal nanoparticles as a particulate emulsifier and a dichloromethane (CH2Cl2) solution of PLGA as an oil phase. Moreover, this stable emulsion present a good pH-responsive characteristic. The uncross-linked chitosan nanoparticles coated PLGA microcapsules were fabricated by the evaporation of CH2Cl2 from the emulsion, and the cross-linked chitosan nanoparticles coated PLGA microcapsules were prepared by cross-linking with glutaraldehyde and evaporation of CH2Cl2. The two types of microcapsules were characterized in terms of size, morphology using scanning electronic microscope (SEM), optical microscope, and so on. These observations confirm the robust nature of these cross-linked microcapsules. Moreover, a possible mechanism for the formation of these microcapsules was proposed. The combined system of Pickering emulsion and solvent volatilization opens up a new route to fabricate a variety of microcapsules.  相似文献   

18.
与传统表面活性剂稳定的乳液相比,固体纳米颗粒稳定的Pickering乳液具有较强的界面稳定性、多功能性、低毒性等优势,在生物医药领域具有较大的应用潜力。而相较于尺寸较大的微米级Pickering乳液,亚微米Pickering乳液具有更大的比表面积、更有效的递送效率,有望进一步拓展Pickering乳液在生物医药领域的应用。但由于Pickering乳液的制备影响因素众多,且相互制约,刚性的固体颗粒难以在较小的有限油水界面排布,增加了亚微米Pickering乳液的制备难度。本工作以制备稳定的亚微米Pickering乳液为研究目标,采用具有良好生物相容性的天然多糖–纤维素纳米晶(CNCs)为颗粒乳化剂,角鲨烯作为油相,考察了颗粒浓度、油水比例、水相成分、超声时间及频率对Pickering乳液粒径分布及稳定性的影响,最终得到了具有良好的储存稳定性和抗离心稳定性的粒径为638.7?8.40 nm的亚微米Pickering乳液(CNCs-PE)。通过激光共聚焦显微镜证实了CNCs吸附在油水界面,形成了Pickering乳液结构。利用CCK-8法评价了CNCs和CNCs-PE的细胞毒性,结果表明,两者都具有良好的细胞安全性。此外,将其用于吸附模型抗原OVA,吸附率达到约80%,且肌肉注射部位的切片结果也表明其注射安全性良好。此结果为亚微米Pickering乳液进一步研究提供了参考,并有望拓展CNCs稳定的亚微米Pickering乳液在生物医药领域的应用。  相似文献   

19.
A series of porous polymers with different pore volumes, pore sizes, and crosslinking densities were synthesized by high internal phase emulsion (HIPE) polymerization. The crosslinked polymerized HIPEs (polyHIPEs) were formed by the copolymerization of 4-vinylbenzyl chloride and divinylbenzene using water droplets in conventional or Pickering HIPEs as the templates. These porous materials were further modified by quaternization and ion exchange to introduce quaternary ammonium hydroxide groups. The resulting polyHIPEs were utilized as sorbents for reversible CO2 capture from air using the humidity swing. The effect of pore structure on the CO2 adsorption and desorption processes was studied. The polyHIPEs containing large pores and interconnected porous structures showed improved swing sizes and faster adsorption/desorption kinetics of CO2 compared to a commercial Excellion membrane with similar functional groups.  相似文献   

20.
用未修饰的高亲水性纳米二氧化硅颗粒(SiO2 NPs)在其等电点附近制备Pickering乳液。结果表明,等电点(pH 2.7)条件下SiO2 NPs借助高能均质与油水界面剧烈混合,并在范德华引力的驱动下以弱吸附的状态在界面处负载,从而稳定得到O/W型Pickering乳液。增加SiO2 NPs的浓度或减小油相体积分数可提高单位油滴界面的颗粒负载率,增大连续相黏度并促进乳液液滴之间形成三维网络结构从而提高乳液稳定性。通过调节连续相的pH以促进SiO2 NPs表面的硅烷醇发生质子化与去质子化的转变,实现乳液多次pH响应循环。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号