首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Experiments are performed, which investigated the effect of inclination angle, θ, on saturation pool boiling of HFE-7100 dielectric liquid from a smooth, 10×10 mm copper surface, simulating a microelectronic chip. For θ?90° and surface superheats, ΔTsat>20 K, nucleate boiling heat flux decreases with increased θ, but increases with θ for ΔTsat<20 K. Similarly, at higher inclinations and ΔTsat>13 K, nucleate boiling heat flux decreases with increased inclination, but at lower surface superheats the trend is inconclusive. The developed nucleate boiling correlation is within ±10% of the data and the developed correlations for critical heat flux (CHF) and the surface superheat at CHF are within ±3% and ±8% of the data, respectively. Results show that CHF decreases slowly from 24.45 W/cm2 at 0° to 21 W/cm2 at 90°, then decreases fast with increased θ to 4.30 W/cm2 at 180°. The surface superheat at CHF also decreases with θ, from 31.7 K at 0° to 19.9 K at 180°. Still photographs are recorded of pool boiling at different heat fluxes and θ=0°, 30°, 60°, 90, 120°, 150° and 180°. The measured average departure bubble diameter from the photographs taken at the lowest nucleate boiling heat flux of ∼0.5 W/cm2 and θ=0° is 0.55±0.07 mm and the calculated departure frequency is ∼100 Hz.  相似文献   

2.
《Energy Conversion and Management》2005,46(15-16):2455-2481
Enhanced boiling of HFE-7100 dielectric liquid on porous graphite measuring 10 mm × 10 mm is investigated, and results are compared with those for smooth copper (Cu) of the same dimensions. Although liquid is out-gassed for hours before performing the pool boiling experiments, air entrapped in re-entrant type cavities, ranging in size from tens to hundreds of microns, not only enhanced the nucleate boiling heat transfer and the critical heat flux (CHF), but also, the mixing by the released tiny air bubbles from the porous graphite prior to boiling incipience enhanced the natural convection heat transfer by ∼19%. No temperature excursion is associated with the nucleate boiling on porous graphite, which ensues at very low surface superheat of 0.5–0.8 K. Conversely, the temperature overshoot at incipient boiling on Cu is as much as 39.2, 36.6, 34.1 and 32.8 K in 0 (saturation), 10, 20 and 30 K subcooled boiling, respectively. Nucleate boiling ensues on Cu at a surface superheat of 11.9, 10.9, 9.5 and 7.5 K in 0 (saturation), 10, 20 and 30 K subcooled boiling, respectively. The saturation nucleate boiling heat flux on porous graphite is 1700% higher than that on Cu at a surface superheat of ∼10 K and decreases exponentially with increased superheat to ∼60% higher near CHF. The CHF values of HFE-7100 on porous graphite of 31.8, 45.1, 55.9 and 66.4 W/cm2 in 0 (saturation), 10, 20 and 30 K subcooled boiling, are 60% higher and the corresponding superheats are 25% lower than those on Cu. In addition, the rate of increase in CHF with increased liquid subcooling is 50% higher than that on Cu.  相似文献   

3.
This paper explores the single-phase and two-phase cooling performance of a hybrid micro-channel/slot-jet module using HFE-7100 as working fluid. Three-dimensional numerical simulation using the kε turbulent model is used to both assess the single-phase performance and seek a geometry that enhances heat removal capability and surface temperature uniformity while decreasing mean surface temperature. This geometry is then tested experimentally to validate the numerical findings and aid in the development of correlations for both the single-phase and two-phase heat transfer coefficients. The hybrid module is shown to maintain surface temperature gradients below 2 °C for heat fluxes up to 50 W/cm2. Even without phase change, the hybrid module is capable of dissipating heat fluxes as high as 305.9 W/cm2. Highly accurate single-phase correlations are developed using a superpositioning technique that consists of assigning a different heat transfer coefficient for each portion of the heat transfer area based on the dominant heat transfer mechanism for that portion. Increasing subcooling and/or flow rate is shown to delay the onset of nucleate boiling to a higher heat flux and higher surface temperature, as well as enhance critical heat flux (CHF). A correlation previously developed for hybrid micro-channel/micro-circular-jet module is deemed equally effective at predicting two-phase heat transfer data for the present hybrid module.  相似文献   

4.
The objective of this investigation was to apply the technique of using a microthermocouple flushmounted at the boiling surface for the measurement of the local surface-temperature history in film and transition boiling on high temperature surfaces. From this measurement direct liquid-solid contact in film and transition boiling regimes was observed. In pool boiling of saturated, distilled, deionized water on an aluminum-coated copper surface, the time-averaged, local liquid-contact fraction increased with decreasing surface superheat. Average contact duration increased monotonieally with decreasing surface superheat, while frequency of liquid contact reached a maximum of ~ 50 contacts s?1 at a surface superheat of ~100 K and decreased gradually to 30 contacts s?1 near the critical heat flux. The liquid-solid contact duration distribution was dominated by short contacts < 4 ms for high surface superheats and shifted to long contacts > 4 ms at low surface superheats, passing through a relatively flat contact duration distribution at about 80 K. The results of this paper indicate that liquid-solid contacts may be the dominant mechanism for energy transfer in the transition boiling process.  相似文献   

5.
ABSTRACT

This study presents an experimental exploration of flow boiling heat transfer in a spiraling radial inflow microchannel heat sink. The effect of surface wettability, fluid subcooling, and mass fluxes are considered. The design of the heat sink provides an inward radial swirl flow between parallel, coaxial disks that form a microchannel of 300 microns. The channel is heated on one side, while the opposite side is essentially adiabatic to simulate a heat sink scenario for electronics cooling. To explore the effects of varying surface wetting, experiments were conducted with two different heated surfaces. One was a clean, machined copper surface and the other was a surface coated with zinc oxide nanostructures that are superhydrophilic. During boiling, increased wettability resulted in quicker rewetting and smaller bubble departure diameter, as indicated by reduced temperature oscillations during boiling, and achieving higher maximum heat flux without dryout. The highest heat transfer coefficients were seen in fully developed boiling with low subcooling levels as a result of heat transfer being dominated by nucleate boiling. The highest heat fluxes achieved were during partial subcooled flow boiling at 300 W/cm2 with an average surface temperature of 134° Celsius. Recommendations for electronics cooling applications are also discussed.  相似文献   

6.
ABSTRACT

The pool boiling performance plays a key role in the development of high heat flux dissipating applications. The high critical heat flux and low wall superheat are two of the critical factors that affect the long-term life of devices. In this paper, enhanced pool boiling performance can be achieved by well-designed microchannels in copper surfaces using a precision diamond dicing method. The microchannel patterned surface with the channel length of 0.4 mm obtains a critical heat flux of 169.8 W/cm2, which has a 193% enhancement compared to the plain surface. Besides, the extremely low wall superheat of 3 K has been achieved, and thus the heat transfer coefficient reaches 51.8 W/cm2·K, about 738% larger than that of the plain surface. Herein, the microcavity has increased the nucleation site, the surface can promote the bubbles escape, and then the channel can continuously supply the liquid. Hence, the extremely low wall superheat at high heat flux occurs due to the rapid bubble departure and enhanced capillary feeding of liquid replenishment to active nucleation sites on the surface. The above results provide an effective way for the realization of high-performance two-phase microchannel patterned heat sinks via optimizing the microstructure geometry.  相似文献   

7.
ABSTRACT

Nanostructured microporous surfaces were electrodeposited at various electrolyte temperatures on copper substrate to investigate the saturated pool boiling enhancement of distilled water at atmospheric pressure. Surface structure topography and wickability were analyzed to investigate their relation to critical heat flux. Scanning electron microscope showed that the micro-clusters have nanostructures from cubic at 5°C to dendritic at 60°C electrolyte temperature. Rate-of-rise experiments demonstrated that dendritic copper structure has the best capillary performance. The experimental results of pool boiling heat transfer indicate that the critical heat flux increased with surface wickability. Electrodeposited porous surface in hot electrolyte showed the highest critical heat flux and heat transfer coefficient of the 124 W/cm2 and 17 W/cm2K, respectively, which is 50% and 270% higher than that of plain surface. However, the two-step electrodeposition and annealing were used in fabrication of surfaces, but the mechanical strength of layer needs more improvement by changing the electrochemical process parameters.  相似文献   

8.
The subcooled flow boiling heat transfer characteristics of a kerosene kind hydrocarbon fuel were investigated in an electrically heated horizontal tube with an inner diameter of 1.0 mm, in the range of heat flux: 20–1500 kW/m2, fluid temperature: 25–400 °C, mass flux: 1260–2160 kg/m2 s, and pressure: 0.25–2.5 MPa. It was proposed that nucleate boiling heat transfer mechanism is dominant, as the heat transfer performance is dependent on heat flux imposed on the channel, rather than the fuel flow rate. It was found that the wall temperatures along the test section kept constant during the fully developed subcooled boiling (FDSB) of the non-azeotropic hydrocarbon fuel. After the onset of nucleate boiling, the temperature differences between inner wall and bulk fluid begin to decrease with the increase of heat flux. Experimental results show that the complicated boiling heat transfer behavior of hydrocarbon fuel is profoundly affected by the pressure and heat flux, especially by fuel subcooling. A correlation of heat transfer coefficients varying with heat fluxes and fuel subcooling was curve fitted. Excellent agreement is obtained between the predicted values and the experimental data.  相似文献   

9.
Experiments are conducted which investigated enhancements in nucleate boiling of FC-72 dielectric liquid on porous graphite and compared results with those on a smooth copper surface of the same dimensions (10 × 10 mm). Also investigated is surface temperature excursion at boiling incipience and the obtained values of CHF are compared with those of other investigators on copper, silicon, and micro-finned silicon surfaces and micro-porous coatings. Results showed no temperature excursion at boiling incipience on porous graphite but as much as 14.0 K in saturation and 9.0-13.3 K in subcooled boiling on copper. The nucleate boiling heat transfer coefficients on porous graphite are significantly higher than on copper and the values of CHF (27.3, 39.6, 49.0, and 57.1 W/cm2 in saturation and at ΔTsub = 10, 20, and 30 K, respectively) are 63-94% higher than on copper (16.9, 21.9, 26.9, and 29.5 W/cm2, respectively). The surface superheats at CHF on porous graphite (11.0 K in saturation and 17.2-19.5 K in subcooled boiling) are lower than on copper (21.3 K and 22.9-24.9 K, respectively). The nucleate boiling heat transfer coefficient increase with subcooling and CHF increased linearly with ΔTsub. The subcooling coefficient of CHF on porous graphite (0.041) is slightly smaller than those on micro-porous coatings (0.044 and 0.049) but much higher than those on micro-finned silicon surfaces (0.022, 0.036), and on Cu, Si, and enhanced SiO2 (0.018) surfaces.  相似文献   

10.
It has been considered that dry-out occurs easily in boiling heat transfer for a small channel, a mini- or microchannel, because the channel was easily filled with coalescing vapor bubbles. In the present study, the experiments of subcooled flow boiling of water were performed under atmospheric conditions for a horizontal rectangular channel for which the size is 1 mm height and 1 mm width, with a flat heating surface of 10 mm length and 1 mm width placed on the bottom of the channel. The heating surface has a top of copper heating block and is heated by ceramic heaters. In the high heat flux region of nucleate boiling, about 70–80% of the heating surface was covered with a large coalescing bubble and the boiling reached critical heat flux as observed by high-speed video. In the beginning of transition boiling, coalescing bubbles were collapsed to many fine bubbles and microbubble emission boiling was observed at liquid subcooling higher than 30 K. The maximum heat flux obtained was 8 MW/m2 (800 W/cm2) at liquid subcooling of higher than 40 K and a liquid velocity of 0.5 m/s. However, the surface temperature was very much higher than that of a centimeter-scale channel. The high-speed video photographs indicated that microbubble emission boiling occurs in the deep transition boiling region.  相似文献   

11.
Experiments were conducted to study the subcooled flow boiling heat transfer performance of FC-72 over silicon chips. For boiling heat transfer enhancement, two kinds of micro-pin-fins having fin thickness of 50 μm and fin heights of 60 and 120 μm, respectively, were fabricated on the silicon chip surface with the dry etching technique. The fin pitch was twice the fin thickness. The experiments were conducted at the fluid velocities of 0.5, 1 and 2 m/s and the liquid subcoolings of 15, 25 and 35 K. The micro-pin-finned surfaces showed a sharp increase in heat flux with increasing wall superheat and a large heat transfer enhancement compared to a smooth surface. The nucleate flow boiling curves for the two micro-pin-finned surfaces collapsed to one line showing insensitivity to fluid velocity and subcooling, while the critical heat flux values increased with fluid velocity and subcooling. The micro-pin-finned surface with a larger fin height of 120 μm provided a better flow boiling heat transfer performance and a maximum critical heat flux of 145 W/cm2. The wall temperature at the critical heat flux for the micro-pin-finned surfaces was less than 85 °C for the reliable operation of LSI chips.  相似文献   

12.
Transient heat-transfer data have been obtained for flat heating surfaces in static liquid and supercritical helium. Measurements start 2(10)?5 s after step power inputs, and cover a heat flux range of 0.05–20 W/cm2, pressures from 0.09–0.3 MPa, and four different heater orientations. Initial heat-transfer coefficients, being limited primarily by the Kapitza resistance, are 10–100 times greater than steady state, and the time to reach steady state varies from 10?5 to 1s. For heat flux below the steady state peak nucleate boiling limit the temperature follows calculations based on pure conduction to the steady state nucleate boiling level. Above that limit the transient conduction period leads to an apparent metastable nucleation period followed by a transition to film boiling.  相似文献   

13.
Subcooled flow film boiling experiments were conducted on a vertical flat plate, 30.5 cm in height, and 3.175 cm wide with forced convective upflow of subcooled water at atmospheric pressure. Data have been obtained for mass fluxes ranging from 0 to 700 kg/m2s, inlet subcoolings ranging from 0 to 25 °C and wall superheats ranging from 200 to 400 °C. Correlations for wall heat transfer coefficient and wall heat flux partitioning were developed as part of this work. These correlations derive their support from simultaneous measurements of the wall heat flux, fluid temperature profiles, liquid side heat flux and interfacial wave behavior during steady state flow film boiling. A new correlation for the film collapse temperature was also deduced by considering the limiting case of heat flux to the subcooled liquid being equal to the wall heat flux. The premise of this deduction is that film collapse under subcooled conditions occurs when there is no net vapor generation. These correlations have also been compared with the data and correlations available in the literature.  相似文献   

14.
This research paper reports the results for convective heat transfer coefficient and nucleate boiling heat flux for pool boiling of milk during khoa making. Various indoor experiments were conducted for different heat flux inputs varying from 9638.55 to 14457.83 W/m2. Experimental data obtained for pool boiling of milk were analyzed by using the Rohsenow correlation with the help of simple linear regression analysis. The convective heat transfer coefficients were estimated in the range of 334.48 to 837.78 W/m2 °C for the given heat inputs. The results for heat flux were found to be varying from 3344.8 to 8377.8 W/m2 at 10 °C excess temperature of the aluminum pot surface above the saturation temperature of the milk. The experimental errors in terms of percent uncertainty were also calculated. © 2011 Wiley Periodicals, Inc. Heat Trans Asian Res; Published online in Wiley Online Library ( wileyonlinelibrary.com ). DOI 10.1002/htj.20336  相似文献   

15.
Pool boiling enhancement through surface modification has garnered the attention of many researchers for extending the limits of heat flux dissipation. Simulated copper chips were used in a pool boiling setup with water boiling at atmospheric pressure. Heat transfer performance of different microchanneled surfaces was compared to that of a plain surface. The results of the study showed that the mechanism at work for the bubble dynamics was the ability of the surface to pull liquid through the channels to induce heat transfer. Geometrical trends were observed from the study as well with the wider and deeper channels and thinner finned surfaces showing the best heat transfer results. Without reaching the critical heat flux condition, the best performing chip dissipated a heat flux of 244 W/cm2 corresponding to a record heat transfer coefficient of 269 kW/m2 K.  相似文献   

16.
This paper investigates flow boiling of water in microchannels with a hydraulic diameter of 227 μm possessing 7.5 μm wide reentrant cavities on the sidewalls. Average two-phase heat transfer coefficients and CHF conditions have been obtained over a range of effective heat fluxes (28–445 W/cm2) and mass velocities (41–302 kg/m2 s). High Boiling number and Reynolds number have been found to promote convective boiling, while Nucleate Boiling dominated at low Reynolds number and Boiling number. A criterion for the transition between nucleate and convective boiling has been provided. Existing correlations did not provide satisfactory agreement with the heat transfer coefficient but did predict CHF conditions well.  相似文献   

17.
The critical heat flux (CHF) and heat transfer coefficient of de-ionized (DI) water pool boiling have been experimentally studied on a plain surface, one uniform thick porous structure, two modulated porous structures and two hybrid modulated porous structures. The modulated porous structure design has a porous base of 0.55 mm thick with four 3 mm diameter porous pillars of 3.6 mm high on the top of the base. The microparticle size combinations of porous base and porous pillars are uniform 250 μm, uniform 400 μm, 250 μm for base and 400 μm for pillars, and 400 μm for base and 250 μm for pillars. Both the CHF and heat transfer coefficient are significantly improved by the modulated porous. The boiling curves for different kinds of porous structures and a plain surface are compared and analyzed. Hydrodynamic instability for the two-phase change heat transfer has been delayed by the porous pillars which dramatically enhances the CHF. The highest pool boiling heat flux occurring on the modulated porous structures has a value of 450 W/cm2, over three times of the CHF on a plain surface. Additionally, the highest heat transfer coefficient also reaches a value of 20 W/cm2 K, three times of that on a plain copper surface. The study also demonstrates that the horizontal liquid replenishing is equally important as the vertical liquid replenishing for the enhancement of heat transfer coefficient and CHF improvement in nucleate pool boiling.  相似文献   

18.
Experimental study of biporous wicks for high heat flux applications   总被引:2,自引:0,他引:2  
Biporous wicks are wicks with two distinguished characteristic pore sizes while monoporous wicks are wicks with a single characteristic pore size. In this work three monoporous and 19 biporous wicks were tested. Thermophysical properties for the biporous wicks were measured.Thin biporous wicks distinguish from thick biporous wick by mechanism of heat transfer that occurs inside the wick. Thin biporous wicks remove heat similar to monoporous wicks by evaporation from menisci formed inside pores at liquid–vapor–solid interfaces. Thin biporous wicks were found to reach higher critical heat flux (CHF) than monoporous wicks because they develop evaporating menisci not only on top surface of the wick but also inside the wick. Thick biporous wicks were found to reach even higher CHF than thin biporous wicks because they continue to operate although the vapor blanket (film boiling) exists on the heated surface. This is possible because the top layer of the wick continues to supply liquid to the evaporating menisci above the vapor blanket region and vapor jets form between large pores of the wick and vent the vapor out of the wick. It was also found that for thick biporous wicks operating at very high heat fluxes, the heat conducts radially into the wick.The best monoporous wick tested had CHF at 300 W/cm2 (21 °C superheat), the best thin biporous wick tested had CHF at 520 W/cm2 (50 °C superheat), and the best thick biporous wick tested had CHF at 990 W/cm2 (147 °C superheat). Thick biporous wicks can be used for 600–1000 W/cm2 applications where high superheats and heat spreading into the wick are acceptable. For applications below 600 W/cm2 are recommended thin biporous wicks and for applications below 300 W/cm2 are recommended monoporous wicks.  相似文献   

19.
Liquid hydrogen flow boiling heat transfer in tubes is of great importance in the hydrogen applications such as superconductor cooling, hydrogen fueling. In the present study, a numerical model for hydrogen nucleate flow boiling based on the wall partition heat flux model is established. The key parameters in the model such as active nucleation site density, bubble departure diameter and frequency are carefully discussed and determined to facilitate the modeling and simulation of hydrogen flow boiling. Simulation results of the numerical model show reasonably well agreement with experimental data from different research groups in a wide operation condition range with the means absolute error (MAE) of 10.6% for saturated and 5.3% for subcooled flow boiling. Based on the model, wall heat flux components and void fraction distribution of hydrogen flow boiling are studied. Effects of mass flow rate and wall heat flux on the flow boiling heat transfer performance are investigated. It is found that in the hydrogen nucleate flow boiling, the predominated factor is the Boiling number, rather than the vapor quality. A new simple correlation is proposed for predicting hydrogen saturated nucleate flow boiling Nusselt number. The MAE between the correlation predicted and experimentally measured Nusselt number is 13.6% for circular tubes and 12.5% for rectangular tubes. The new correlation is applicable in the range of channel diameter 4–6.35 mm, Reynolds number 64000–660,000, saturation temperature 22–29 K, Boiling number 8.37 × 10?5–2.33 × 10?3.  相似文献   

20.
The nucleate boiling of subcooled water, under 100 cm2 square arrays of impinging sprays, was experimentally investigated. Three types of commercially available full cone pressure nozzles, of distinct flow capacities, allowed for runs where the average impinging coolant mass flux spanned the 0.3–7.2 kg/m2-s range. Array geometry was varied adjusting nozzle-to-nozzle and nozzle-to-impingement surface distances. Experimental construction allowed for good drainage of spent coolant and unrestricted air entrainment to spray cones. The average heat flux through the heated, upward-facing, copper impingement surface was found to be equal to the sum of single-phase and nucleate boiling heat flux components. The phase-change component was experimentally observed to depend upon wall excess temperature only. The proposed heat transfer correlation reproduces original experimental data with a mean absolute error of 10.6%. Non-critical-heat-flux (non-CHF) cooling capacity and efficiencies of up to, respectively, 2000 kJ/kg and 83% were observed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号