首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Poly(methacrylic acid) hydrogels were synthesized. The effects of the synthesis parameters: the neutralization degree of methacrylic acid and the concentrations of monomer, crosslinker and initiator on the xerogels structural properties: the xerogel density (ρxg), the number average molar mass between the network crosslinks (Mc), the crosslink degree (ρc), the number of elastically effective chains totally induced in a perfect network per unit volume (Ve), the distance between the macromolecular chains (ξ) and the equilibrium swelling degree (SDeq) and the swelling kinetics was investigated. As the concentrations of crosslinker, monomer and initiator increase, the value of ρxg, ρc and Ve increases and decreases the value of Mc, ξ and SDeq. With the increase in the neutralization degree of methacrylic acid, the values of ρxg, Mc, ξ, SDeq increase, while the ρc and Ve decrease. The xerogels structural properties, SDeq and swelling kinetic parameters are mainly in power law form functional relationships with the synthesis parameters as well as with the xerogels crosslinking degree.  相似文献   

2.
Summary In this work, we synthesize a novel protein-based superabsorbent hydrogel and study its swelling behavior. The crosslinking graft copolymerization of acrylic acid (AA) onto the hydrolyzed collagen as a protein backbone was carried out in a homogeneous medium. Potassium persulfate (KPS) as an initiator and N,N-methylene bisacrylamide (MBA) as a crosslinker were used. The product’s structure was established using FTIR spectroscopy. We were systematically optimized the certain variables of the graft copolymerization (i.e. the monomer, the initiator, and the crosslinker concentration) to achieve a hydrogel with maximum swelling capacity. Under this condition, maximum capacity of swelling in distilled water was found to be 920 g/g. Morphology of the optimized sample was examined by scanning electron microscopy (SEM). The swelling ratio in various salt solutions was also determined. Additionally, the swelling of superabsorbing hydrogels was measured in solutions with pH ranged from 1 to 13. The synthesized hydrogel exhibited a pH-responsiveness character so that a swelling-collapsing pulsatile behavior was recorded at pH 2 and 8.  相似文献   

3.
A pH‐, temperature‐, and salt‐sensitive hydrogel was synthesized using acrylic acid (AA) as monomer, natural polysaccharide Aloe vera as backbone, ammonium persulfate–N,N‐methylene‐bis‐acrylamide as an initiator–crosslinker system via free‐radical grafting method. Different parameters such as treatment time, temperature, amount of solvent, pH, concentration of initiator, crosslinker and monomer were screened using Plackett–Burman design (PBD). The PBD showed that pH, monomer, and crosslinker were taken as the most important variables, which highly impact the swelling behavior of the synthesized hydrogel as compared to the rest of the variables. The half normality plot was used to find the significant parameters regarding the swelling capacity of the hydrogel. The center composite design was used for further optimizing the important variables like pH, monomer, and crosslinker. The pH and monomer interaction on percentage swelling (Ps) was studied through the analysis of variance model. Synthesized hydrogel Av‐cl‐poly(AA) was characterized by different techniques such as Fourier‐transform infrared spectroscopy (FTIR), X‐ray diffraction, and scanning electron microscopy (SEM). The effect of different chloride salt solutions like KCl, NaCl, BaCl2, FeCl3, and CoCl3·6H2O on Ps of synthesized Av‐cl‐poly(AA)‐based hydrogel was also studied. Biodegradation studies of the synthesized polymer were also carried out using soil burial and vermicompositing methods. Biodegradation of semi interpenetrating polymer network (SIPN) was confirmed by SEM and FTIR techniques. Synthesized SIPN was also used as a device for the removal of dye and was found very effective as an adsorbent. POLYM. ENG. SCI., 59:2323–2334, 2019. © 2019 Society of Plastics Engineers  相似文献   

4.
A polyacrylate/graphite composite was synthesized by aqueous solution polymerization. Based on the electrical conductivity of graphite and the water absorbency of polyacrylate, a novel conductive hydrogel with a conductivity of 7.3 mS m−1 was prepared. The influence of crosslinker, initiator, monomer, neutralization degree, graphite, water absorbency and temperature on the electrical conductivity of the hydrogel was investigated. An appended network structure model of the polyacrylate/graphite conductive hydrogel is proposed.  相似文献   

5.
A polyacrylamide/Cu superabsorbent composite was synthesized by aqueous solution polymerization. Based on the electrical conductivity of Cu and the water absorbency of polyacrylamide, a novel conducting hydrogel with a conductivity of 1.08 mS m−1 was prepared. The effect of crosslinker, initiator, monomer, neutralization degree, Cu amount, water absorbency and reaction temperature on the electrical conductivity of the hydrogel was investigated. An appended network structure model of the polyacrylamide/Cu conducting hydrogel is proposed.  相似文献   

6.
A novel superabsorbent hydrogel has been synthesized with the crosslinking graft copolymerization of acrylic acid (AA) and acrylamide onto the chain of silk sericin. Potassium persulfate (KPS)–sodium sulfite (NaHSO3) as redox initiation system and N,N′-methylenebisacrylamide (MBA) as crosslinker were used. The structure of the product characterized by Fourier transform infrared absorption spectroscopy and the surface morphology of the hydrogel were observed by scanning electron microscopy. The certain parameters of the graft copolymerization including the monomer, the initiator, the crosslinker concentration, neutralization degree of AA, reaction temperature, and time were systematically optimized to achieve a hydrogel with maximum swelling capacity (2150 g/g). The optimal conditions were initiator 8 mmol/L, MBA 2.5 mmol/L, neutralization degree of AA 75%, reaction temperature 55 °C, and time 6 h. The swelling ratio in salt solutions was also determined (in 0.9% NaCl aqueous solution: 98 g/g). In addition, the swelling capability of the hydrogel was measured in solutions with pH ranged from 1 to 13. The synthesized hydrogel exhibited a pH-dependent character. Water absorbency of the product in aqueous chloride salt solutions has the Na+ > Ca2+ > Mg2+ > Al3+ order in the investigated concentration.  相似文献   

7.
In this work, we discuss the ammonium nitrogen adsorption and reusability from aqueous solution by using poly(sodium acrylate) (PANa) hydrogels (Polymers 1–6 ) under different amount of crosslinker and initiator. The PANa hydrogels were synthesized from the neutralized acrylic acid (AA) monomer via free radical thermal polymerization by using ammonium persulfate (APS) as an initiator and N,N′-methylene-bisacrylamide (MBA) as a crosslinker. These polymers exhibited glass transition temperatures (Tg) of 68–88°C and Td values (5% weight loss temperature) in the range of 190–221°C under nitrogen atmosphere. The PANa hydrogels had swollen ratios ranging from 387 to 4,063%, related to the crosslinking density. The final equilibrium adsorption capacity of the polymers was in the range of 20–39 ppm with an initial ammonium nitrogen concentration of 100 ppm. Among them, Polymer 3 without MBA crosslinker displayed the highest swollen characteristic along with the most efficient adsorption capacity. In comparison, the as-prepared high crosslinking density hydrogels showed relative lower adsorption capability but higher reusability. The polymer composition in this work determines the ability to absorb and desorb ammonium nitrogen compound.  相似文献   

8.
Cu microparticles are dispersed in a polyacrylamide (PAM) superabsorbent by a two steps aqueous solution polymerization. Based on the electrical conductivity of Cu and the water absorbency of PAM, a novel conducting hydrogel (PAM/Cu) with a conductivity of 6.12 mS cm−1 and percolation threshold of 3 wt% is prepared. An appended network structure model for explaining the electrical conduction of PAM/Cu hydrogel is proposed. And the effects of crosslinker, initiator, monomer concentration, Cu content, reaction temperature, water absorbency on the electrical conductivity are also investigated according to the structure model. POLYM. COMPOS., 2009. © 2008 Society of Plastics Engineers  相似文献   

9.
Polyacrylamide/graphite superabsorbent composite was synthesized by free radical polymerization of acrylamide monomer using N,N′‐methylene‐bis‐acrylamide as crosslinker, potassium persulfate as initiator, and graphite as functional filler. On the basis of the superabsorbent composite, a hydrogel with a conductivity of 0.86 mS cm?1 was obtained. The preparation conditions were optimized. The influence of crosslinker, initiator, monomer, graphite, water absorbency, and temperature on the conductivity of the hydrogel was investigated, an adsorbed network structure model for polyacrylamide/graphite conducting hydrogel was purposed. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci 2008  相似文献   

10.
Some pH responsive polymeric matrix of Linseed (Linum usitatissimum), L. hydrogel (LSH) was prepared by free radical polymerization using potassium persulfate (KPS) as an initiator, N,N-methylene bisacrylamide (MBA) as a crosslinker, acrylic acid (AA) and methacrylic acid (MAA) as monomers; while ketoprofen was used as a model drug. Different formulations of LSH-co-AA and LSH-co-MAA were formulated by varying the concentration of crosslinker and monomers. Structures obtained were thoroughly characterized using Fourier transforms infrared (FTIR) spectroscopy, XRD analysis and Scanning electron microscopy. Sol-gel fractions, porosity of the materials and ketoprofen loading capacity were also measured. Swelling and in vitro drug release studies were conducted at simulated gastric fluids, i.e., pH 1.2 and 7.4. FTIR evaluation confirmed successful grafting of AA and MAA to LSH backbone. XRD studies showed retention of crystalline structure of ketoprofen in LSH-co-AA and its amorphous dispersion in LSH-co-MAA. Gel content was increased by increasing MBA and monomer content; whereas porosity of hydrogel was increased by increasing monomer concentration and decreased by increasing MBA content. Swelling of copolymer hydrogels was high at pH 7.4 and low at pH 1.2. Ketoprofen release showed an increasing trend by increasing monomer content; however it was decreased with increasing MBA content. Sustained release of ketoprofen was noted from copolymers and release followed Korsmeyer-Peppas model.  相似文献   

11.
In this work, the conductive hydrogel composites containing Zn particle synthesized and their electrical and thermal properties were investigated. Polyacrylamide/Zn composites were synthesized by free radical polymerization in aqueous solution. The effect of preparation conditions such as the influence of crosslinker amount, initiator amount, Zn amount, and water absorbency on electrical conductivity of hydrogel was investigated. The effect of preparation conditions on thermal properties has been characterized using thermogravimetric analysis (TGA) method. The structures of metal‐composites were evaluated by FTIR and scanning electron microscopy (SEM) methods. SEM revealed a more uniform pore size when Zn particles were used when compared with pure polyacrylamide. TGA curves showed that both hydrogels were stable upto 600°C. The Zn/polyacrylamide hydrogels have a good conductivity of 4.30 mS cm?1. © 2012 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

12.
A 24–1 fractional factorial design was used to evaluate the effect of some parameters, such as the acrylic acid (AA)/chitosan (CTS) molar ratio, crosslinker concentration, initiator concentration, and filler concentration, in the swelling capacity of superabsorbent hydrogel composites based on CTS‐graft‐poly(acrylic acid) and nontronite clay. The data from wide‐angle X‐ray scattering and Fourier transform infrared spectroscopy confirmed the syntheses of the hydrogel composites. Main and interaction effects were analyzed by analysis of variance, F tests, and p values. We found that the AA/CTS and crosslinker were the most influential effects in the evaluated response. The proposed statistical model presented a high coefficient of determination (R2 = 0.985). In addition to the swelling kinetics, the effects of pH and salt for the both compositions (with and without filler), which presented the best water uptake, were evaluated. Both hydrogels showed responsive behavior in relation to the pH and the salt solution, presenting good potential for application as devices in the controlled release of solutes. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

13.
A porous hydrogel nanocopmposite based on biodegradable salep and montmorillonite (MMT) was synthesized by in-situ free radical graft polymerization of salep chains with acrylic acid (AA) monomers. The chemical structure and morphological properties of the prepared hydrogels was evaluated by FTIR spectroscopy, X-ray diffraction and SEM techniques. The effect of reaction variables such as crosslinker, initiator, monomer and clay contents on equilibrium water absorption capacity and swelling kinetic of hydrogel were investigated and optimized. Swelling behavior of the hydrogels in various pH and saline solutions was also studied. Incorporation of MMT into hydrogel matrix caused the formation of porous hydrogel network. These porous structures resulted in higher water uptake capacity and swelling rate in hydrogel nanocomposite in comparison to neat hydrogel sample. Moreover, hydrogel nanocomposite sample exhibited proper salt and pH-sensitive behavior. High swelling capacity and rate, porosity, salt and pH sensitivity make hydrogel nanocomposite a profitable candidate in agricultural and horticultural applications, such as water reservoir system.  相似文献   

14.
The purpose of the study was to develop physically cross-linked novel pH-responsive gelatin – Wells–Dawson-type polyoxometalate (POM)-based self-assembled hydrogels using acrylic acid as a pH-responsive monomer. Cross-linking was achieved through electrostatic interactions between the cationic polymer and anionic Wells–Dawson POM [P2W15O56]12?. Ammonium persulfate and sodium hydrogen sulfite were used as initiators. The hydrogels were yellowish in color and exhibited low mechanical strength. Swelling, drug release, and pH sensitivity studies were conducted at pH 1.2 and 7.4. pH-dependent swelling and release of [P2W15O56]12? from the prepared hydrogels were observed, with a maximum at pH 7.4. The hydrogels were characterized by thermogravimetric analysis, differential scanning calorimetry, scanning electron microscopy, and Fourier transform infrared spectroscopy for evaluation of the surface morphology, hydrogel confirmation, and thermal properties. The results obtained confirmed the development of a gelatin–POM-based self-assembled hydrogel. It can be concluded that as a result of successful physical cross linking, the prepared hydrogels possess desired characteristics of a drug delivery system and can hence be used for a controlled delivery of the encapsulated polyanions. .  相似文献   

15.
Semi‐interpenetrating polymer network hydrogels with different compositions of chitosan (Cs), acrylic acid, and citraconic acid were synthesized via free‐radical polymerization with ethylene glycol dimethacrylate as a crosslinker. The variations of the swelling percentages of the hydrogels with time, temperature, and pH were determined, and Cs–poly(acrylic acid) (PAA) hydrogels were found to be most swollen at pH 7.4 and 37°C. Scanning electron micrographs of Cs–PAA and Cs–P(AA‐co‐CA)‐1 (Cs‐poly(acrylicacid‐co‐citraconir acid)?1) were taken to observe the morphological differences in the hydrogels. Although the less swollen hydrogel, Cs–P(AA‐co‐CA)‐1, had a sponge‐type structure, the most swollen hydrogel, Cs–PAA, displayed a uniform porous appearance. Fluconazole was entrapped in Cs–P(AA‐co‐CA)‐1 and Cs–PAA hydrogels, and the release was investigated at pH 4.0 and 37°C. The kinetic release parameters of the hydrogels (the gel characteristic constant and the swelling exponent) were calculated, and non‐Fickian diffusion was established for Cs–PAA, which released fluconazole much more slowly than the Cs–P(AA‐co‐CA)‐1 hydrogel. A therapeutic range was reached at close to 1 h for both hydrogels. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

16.
The Taguchi method, a robust experimental design, was used for optimization of synthesis of a novel biopolymer‐based superabsorbent hydrogel, kappa‐carrageenan (κ‐C)‐g‐acrylic acid (AA)‐co‐2‐acrylamido‐2‐methylpropanesulfonic acid (AMPS). The Taguchi method was applied for the experimental and standard 18 orthogonal arrays (OA) with seven factors and three levels for each factor. In the synthesis of the superabsorbent, N,N'‐methylene bisacrylamide (MBA) as crosslinker, ammonium persulfate (APS) as initiator, monomer ratio (AA/AMPS), κ‐C concentration, Total Monomer, neutralization percent (NU), and reaction temperature were used as important factors. After analyzing with analysis of variance (ANOVA) results showed that maximum water absorption capability for optimized final product was found to be 1195 g water per one gram of dry hydrogel powder. The proposed mechanism for the grafting and chemically crosslinking reactions was proved with FTIR, SEM, and TGA methods. Furthermore, the absorption capability of the hydrogels towards bivalent metal ions was evaluated. Therefore, the hydrogels may be based‐considered as a candidate to develop an efficient biofilm absorbent in water treatment applications. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

17.
The acrylic comonomers hydroxypropyl methacrylate (HPMA) and N,N-dimethylaminoethyl methacrylate (DMA) have been used in several earlier studies to produce pH-responsive hydrogels. However, these same monomers can also be used to prepare hydrogels that are highly responsive to temperature. One manifestation of this temperature sensitivity is a sharp decrease in hydrogel optical transparency that occurs when the temperature exceeds a critical transition value. For example, a hydrogel that exhibits a swelling transition at the physiological pH value of 7.4 has a transition temperature of about 45 °C when the environmental salt concentration is 0.15 M. The value of the transparency transition temperature is shown to depend on hydrogel synthesis parameters such as comonomer mole ratio, crosslinker mole ratio, and even initiator concentration. By reducing the mole ratio of the crosslinker tetraethylene glycol dimethacrylate (TEGDMA), the transition temperature can be lowered by as much as 15 °C. Environmental salt concentration and solvent polarity are also shown to influence the transition temperature.  相似文献   

18.
A novel biopolymer‐based superabsorbent hydrogel was synthesized through chemical crosslinking by graft copolymerization of partially neutralized acrylic acid onto the hydrolyzed collagen, in the presence of a crosslinking agent and a free radical initiator. The Taguchi method, a robust experimental design, was employed for the optimization of the synthesis reaction based on the swelling capacity of the hydrogels. This method was applied for the experiments and standard L16 orthogonal array with three factors and four levels were chosen. The critical parameters that have been selected for this study are crosslinker (N,N′‐methylene bisacrylamide), initiator (potassium persulfate), and monomer (acrylic acid) concentration. From the analysis of variance of the test results, the most effective factor to control equilibrium swelling capacity was obtained and maximum water absorbency of the optimized final product was found to be 500 g/g. The surface morphology of the gel was examined using scanning electron microscopy. Furthermore, the sorption capacity of the hydrogel toward bivalent metal ions was evaluated. Therefore, the hydrogel may be considered as a candidate to develop as an efficient biopolymer‐based chelating hydrogel for water treatment. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 102: 4878–4885, 2006  相似文献   

19.
A kind of novel hemicellulose‐based hydrogel with excellent water absorbency was synthesized by the graft copolymerization of acrylic acid (AA), acrylic amide (AM) with hemicellulose. The various factors that influenced the water absorbency of the modified hemicellulose were studied, including AA content, hemicellulose content, neutralization degree of AA, and weight ratio (to monomer) of cross‐linker and initiator. The optimal conditions were found as follows: m(AA) : m(AM) : m(hemicellulose) = 15 : 3.5 : 1, the neutralization degree of AA was 75%, and weight ratio (to monomers) of the cross‐linker and the initiator was 0.03% and 1.0%, respectively. The maximum absorbencies toward distilled water and 0.9 wt % NaCl solution were 1128 g/g and 132 g/g, respectively. The characteristics of the hydrogels were also investigated by Fourier Transform InfraRed (FT‐IR), scanning electron microscope (SEM), and atomic force microscope (AFM). The results indicated that the undulant surface and broad network structure offer the hydrogels excellent water absorbency. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 42441.  相似文献   

20.
Conductive polymers and hydrogels are two of the hot prospect polymer types that are used for new stimuli responsive materials. In this study, one-step preparation of electroconductive composite hydrogels containing polypyrrole (PPy) and N-isopropylacrylamide (NIPAM) using free radical polymerization technique was achieved with N,N-methylenebisacrylamide as a crosslinker and ammonium peroxy disulphate (APS) as initiator, in mixture of water/isopropyl alcohol. The equilibrium swelling degree of the poly(NIPAM)-pyrrole) electroconductive composite hydrogel was 9.88 g of H2O/g dry polymer. According to TGA results, the thermal stability of the prepared composite poly(NIPAM-PPy) conductive hydrogel (700°C) hydrogel is higher than that of pure poly(NIPAM) hydrogel (600°C). Furthermore, prepared samples were characterized by FTIR, and SEM analyzes. Later, the samples were pressured into pellets so that electrical impedance spectroscopy (EIS) measurements were taken between 10 and 10 MHz at room temperature. The dielectric constant value of composite poly(NIPAM-PPy) hydrogel at 10 Hz is almost 10 times higher than that of poly(NIPAM) hydrogel. Both samples' real and imaginary parts of dielectric constant decreased with increased frequency. Samples exhibited non-Debye relaxation since experimental data fit into dielectric model of Havriliak-Negami. Moreover, low frequency data yielded d.c. conductivity of the pure and composite samples as 3.74 × 10−11 and 1.02 × 10−8 S/cm, respectively. Real part of impedance at low frequencies also points out ~103 times lower resistance values at 10 Hz for composite poly(NIPAM-PPy) hydrogel. Therefore, EIS results support that electroconductive composite hydrogel fabrication was achieved using free radical polymerization technique.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号