共查询到4条相似文献,搜索用时 2 毫秒
1.
Electrodeposition and electropolishing of nanograined nickel has been observed using an in situ electrochemical wet cell developed for transmission electron microscopy. The cell employs two thin film nickel electrodes in a 0.1 M aqueous NiCl2 electrolyte, which were biased at ±1 V. Anisotropic electrodeposition was observed in which growth of the nickel film across the substrate occurred much more rapidly than growth perpendicular to the substrate. The anisotropic behavior results from relatively equiaxed nanograins nucleating at the growth front with little subsequent coarsening. Grains were observed to nucleate ahead of the growth front, suggesting a new mechanism for electrochemically driven growth across a substrate which depends on ionic surface adsorption ahead of the growth front. During electropolishing the dissolution of nickel tended to occur more isotropically. The film thinned relatively uniformly until certain regions displayed Rayleigh instabilities. At this point the film broke up and some regions coarsened rapidly and/or were subject to electromigration. 相似文献
2.
3.
The effect of He on the primary damage induced by irradiation in ultrahigh-purity (UHP) Fe and Fe(Cr) alloys was investigated by transmission electron microscopy (TEM). Materials were irradiated at room temperature in situ by TEM in a microscope coupled to two ion accelerators, simultaneously providing 500 keV Fe+ and 10 keV He+ ions. Single Fe ion and dual Fe and He ion beam experiments were performed up to a dose of 1 dpa and to a He content of up to 1000 appm. Defects appear in the form of nanometric black dots with sizes between 1 and 5 nm. Defocused images reveal a dense population of sub-nanometric cavities after both single-beam and dual-beam irradiation. In Fe(Cr) alloys, the number densities of visible black dot defects still resolved in TEM are significantly higher after single than after dual-beam irradiation. In UHP Fe, conversely, the presence of He strongly increases the defect number density. The presence of He changes a a0〈1 0 0〉 dominated defect population to a 1/2a0〈1 1 1〉 dominated one in all materials, and the more so in UHP Fe. It appears that Cr increases the number of visible defects relative to UHP Fe. The dependence with increasing Cr content is weak, however, showing only a slight decrease in the number densities. The decrease in the density of visible a0〈1 0 0〉 loops and increase in the visible 1/2a0〈1 1 1〉 loops in all materials when He is present supports the idea that visible a0〈1 0 0〉 loops are formed by the interaction between mobile 1/2a0〈1 1 1〉 loops, as the latter would be immobilized by He already at sub-microscopic sizes. It is concluded that the primary loop population is dominated by 1/2a0〈1 1 1〉 loops. 相似文献
4.
Pristine single crystalline gold particles with sizes ranging from 300 to 700 nm have been fabricated through high-temperature (1150 °C) liquid de-wetting of gold thin films atop a specially designed SiO2/Si substrate for in situ transmission electron microscopy testing. Quantitative compression tests showed that these particles display cataclysmic structural collapse immediately following elastic loading to very high stresses (over 1 GPa), resulting in a nearly pristine postmortem microstructure despite the large plastic deformation experienced by the particle. This distinct class of dislocation plasticity behavior is attributed to the very high degree of structural perfection of the initial sample, resulting from high-temperature formation or annealing around the melting point. Temporally correlated dislocation nucleation from the contact interface together with the inability to form stable junctions inside is proposed to explain the pristine-to-pristine structural collapse. Upon further compression, once the contact diameter d increases to above a critical value (∼250 nm), continuous plastic deformation begins to set in under relatively low flow stress with the postmortem microstructure containing a high density of tangled dislocations, suggesting that a critical dislocation tangling volume under multiple slip is needed for the onset of dislocation storage (robust dislocation jamming) and more conventional plasticity. 相似文献