首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Cadmium selenide (CdSe) nanocrystalline thin films were prepared by chemical bath deposition (CBD) using ammonia and triethanolamine (TEA) as complexing agents, cadmium chloride and sodium selenosulphate as the sources of Cd2+ and Se2? ions, respectively. The structural and optical properties of CdSe nanocrystalline thin films were investigated as a function of the sodium selenosulphate concentrations or ammonia concentrations in precursors using scanning electron microscopy (SEM), energy dispersive spectrometer (EDS), X-ray diffraction (XRD) measurements, transmission electron microscopy (TEM) and UV–visible spectrophotometer measurements. The results reveal that the CdSe thin films are in the pure cubic phase, which composed of a large number of uniform spherical particles. Each spherical particle contains many nanocrystals 3–10 nm in crystallite size. An increase in both the average diameter of the spherical particles and the crystallite size of the nanocrystals occurs with an increase in ammonia concentrations. The Se/Cd atom ratios of CdSe thin films firstly increase and then decrease with an increase in ammonia concentration or sodium selenosulphate concentration. The optical band gap of CdSe thin films decrease with an increase in ammonia concentrations. The kinetics and reaction mechanism of the CdSe nanocrystalline thin films during deposition are discussed.  相似文献   

2.
CdSe nanoparticle thin films were deposited on glass substrates by the chemical bath deposition (CBD) method at low deposition temperature ranging from room temperature up to 50 °C while the pH of the bath was kept constant at 12.1. The structural and morphological variation were investigated by X-ray diffraction (XRD) and scanning electron microscopy (SEM) technique. The energy band gap and optical properties were characterized by the absorbance spectra. Rutherford backscattering spectroscopy (RBS) analysis reveals the excess of Cd rather than Se in depth profile along the thin film thickness. The prepared CdSe nanoparticles have cubic structure and by increasing the temperature the deposited films become continues, homogeneous and tightly adherent. The results also revealed that by increasing the deposition temperature from room temperature up to 50 °C, the band gap decreases from 3.52 eV up to 1.84 eV.  相似文献   

3.
In this work we employed an electrodeposition technique to prepare copper selenide nanorods with various dimensions by changing bath concentration and keeping deposition time fixed. This study reports the effect of bath concentration on the crystal structure, surface morphology and optical properties of copper selenide thin films. The electrodeposited films were characterized using X-ray diffraction (XRD), scanning electron microscopy (SEM), Raman spectra properties, the ultraviolet–visible (UV–vis) and compositional analysis. Upon bath concentration, the band gap energy of copper selenide decreases from 2.54 eV to 2.35 eV along with an increase in the crystal size form 7–17 nm. The crystal size was found to increase upon increase in bath concentration and materials exhibit better crystallization. Similar results were also observed in the XRD studies, where peak intensity increased upon bath concentration.  相似文献   

4.
Zinc sulfide (ZnS) thin films were deposited onto glass substrates using chemical bath deposition technique (CBD). The deposition were carried out in a bath solution with pH ranged from 9 to 11. X-ray diffraction (XRD) and atomic force microscopy (AFM) were used to characterize the films structure and morphology respectively. The amorphous structure of as-deposited films is converted to a nanocrystalline one after a thermal annealing at 550 °C. The deposited ZnS films exhibit a high optical transmission in the UV–visible range (≥80%). They have a direct band gap. Using a solution with pH equal to 10 yields to films with larger optical band gap, smoother surface and lower electrical conductivity.  相似文献   

5.
Cadmium selenide (CdSe) thin films were prepared by chemical bath deposition on glass substrates at different temperatures beginning at room temperature (25 °C) upto 80 °C from an aqueous alkaline medium using a precursor solution containing cadmium acetate, 2,2′,2′′-nitrilotriethanol (triethanolamine), ammonia and sodium selenosulphate. The pH of bath was kept constant around 10.50±0.10. Energy dispersive analysis of X-rays confirmed that the films are nearly stoichiometric in composition. The structural and surface morphological properties have been studied by X-ray diffraction, Scanning electron microscopy and Atomic force microscope techniques. X-ray diffraction study reveals a cubic structure with preferential orientation along (111) direction. The dependency of structural parameters such as crystallite size, strain and dislocation density with different bath temperatures for CdSe thin films are calculated. X-ray peak broadening was used to evaluate the crystallite size and lattice strain by the Williamson–Hall plots. Optical properties are studied by photoluminescence spectra which shows blue shift in peak position and reduction in luminescence intensity were observed for films deposited at different bath temperatures.  相似文献   

6.
Cadmium selenide (CdSe) thin films have been successfully prepared by the electrodeposition technique on indium doped tin oxide (ITO) substrates with aqueous solutions of cadmium sulphate and selenium dioxide. The deposited films were characterized with X-ray diffraction (XRD), scanning electron microscope (SEM), energy dispersive analysis by X-rays (EDAX), photoluminescence (PL), UV spectrometry and electrical resistivity measurements. XRD analysis shows that the films are polycrystalline in nature with hexagonal crystalline structure. The various parameters such as crystallite size, micro strain, dislocation density and texture coefficients were evaluated. SEM study shows that the total substrate surface is well covered with uniformly distributed spherical shaped grains. Photoluminescence spectra of films were recorded to understand the emission properties of the films. The presence of direct transition with band gap energy 1.75 eV is established from optical studies. The electrical resistivity of the thin films is found to be 106 Ω cm and the results are discussed.  相似文献   

7.
Nanostructures of CdO thin films are prepared by chemical bath deposition (CBD) technique. The synthesized film is annealed in static air by using the hotplate at 373, 473, 573 and 673 K for 10 min. The effect of annealing temperature on structural, morphological, optical and electrical properties of CdO thin films has been investigated. The prepared thin films are characterised by X-ray diffraction (XRD), atomic force microscope (AFM), optical reflection microscope (ORM), UV–Visible Spectrophotometer and electrical resistivity. XRD shows the emergence of the cubic phase of CdO film in a preferred orientation (111) plane at 573 K. The AFM and ORM show that CdO films have smooth homogeneous surface in the formula with the emergence of nanoclusters gathering as nanoparticles with the average of grain size about 100 nm at 573 K. The optical properties prove that deposited films have high transparency within the visible range of the spectrum that reaches to more than 85% with a wide band gap that extends from 2.42 eV to 2.7 eV. The electrical properties of the CdO films show that resistivity decreases with increased annealing temperatures. In addition, it is proved that more than one activation energy appears and they change according to the temperature of annealing and this comes as a result of the polycrystalline structure. This study indicates that the properties of CdO thin films could be improved with annealing temperature and these films can be used in many technological applications.  相似文献   

8.
Structural, electrical, and optical properties of undoped and Zn doped lead sulfide (PbS) thin films are benign reported in this paper. The subjected films were grown on glass substrates at 25 °C by a chemical bath deposition (CBD) method. The concentration of Zn in the deposition bath represented by the ratio [Zn2+]/[Pb2+] was varied from 0% to 5%. It was found that the film׳s grains decreased in size with increasing Zn content in the film. XRD data showed the polycrystalline nature of the film its crystal orientation peak intensities decreased with higher doping concentration of Zn. Atomic force microscopy (AFM) measurements revealed that the surface roughness of the films decreased due to zinc doping as well. However, with increasing of the dopant concentration from 0% to 5%, the average transmittance of the films varied over the range of 35–75%. The estimated optical band (Eg) gaps of undoped and Zn doped PbS thin films were in the range of 0.72–1.46 eV. Hall Effect measurements electrical resistivity, carrier concentration and Hall mobility have been determined for the titled film as functions on the Zn content within the film׳s textures. The overall result of this work suggested that the Zn:PbS film is a good candidate as an absorber layer in the modern solar cell devices.  相似文献   

9.
In this paper, thickness dependent structural, surface morphological, optical and electrical properties of RF magnetron sputtered CuIn0.8Ga0.2Se2 (CIGS) thin films were studied using X-ray diffraction (XRD), Transmission electron microscopy (TEM), Field emission scanning electron microscopy (FE-SEM), Atomic force microscopy (AFM), UV–vis–NIR spectrophotometer and Keithley electrical measurement unit. The peak intensity along (112) plane as well as crystallite size was found to increase with thickness. However, for higher film thickness >1.16 μm, crystallinity reduced due to higher % of Cu content. TEM analysis confirmed pollycrysallinity as well as chalcopyrite phase of deposited films. The band gap was found to decrease with increase in thickness yielding a minimum value of 1.12 eV for film thickness 1.70 μm. The IV characteristics showed the ohmic behavior of metal semiconductor contact with higher conductivity for film thickness 1.16 μm.  相似文献   

10.
Zinc oxide (ZnO) was largely studied in various applications such as photovoltaic conversion, optoelectronics and piezoelectric, because of its interesting physical properties (morphological, structural, optical and electrical). The present work deals with the preparation of zinc oxide thin films (ZnO) deposited by the spray pyrolysis method. The starting solution was zinc chloride (ZnCl2). Effects of solution molarity and substrate temperature on films properties were investigated. All films deposited were characterized by various techniques such as X-ray diffraction for structural characterizations, profilometry for thickness measurements, UV–vis transmission spectrophotometry for optical properties and the four probes conductivity measurements for electrical characterization. The X-ray diffraction (XRD) patterns show that the films deposited are polycrystalline with (0 0 2) plan as preferential orientation. The UV–vis spectroscopy confirms the possibility of good transparent ZnO thin films deposition with an average transmission of about ∼85% in the visible region. However, the measured electrical resistivities of the deposited films were in the order of 104 Ω cm  相似文献   

11.
The diffusion barrier properties of IMP deposited TaN between Cu and SiO2 have been investigated in the Cu (200 nm)/TaN (30 nm)/SiO2 (250 nm)/Si multi-layer structure. The IMP-TaN thin film shows better Cu diffusion barrier properties than chemical vapor deposition (CVD) and conventional physical vapor deposition (PVD) deposited TaN films. The thermal stability was evaluated by electrical measurement and X-ray diffraction (XRD) analysis. As a main part of thermal stability studies, the atomic intermixing, new compound formation and phase transitions in the test structure were also studied. Furthermore, a failure mechanism was also examined by X-ray diffraction (XRD), scanning electron microscopy (SEM), atomic force microscopy (AFM), secondary ion mass spectroscopy (SIMS) and Rutherford backscattering spectroscopy (RBS) in conjunction with electrical measurements. The 30 nm thick IMP-TaN was found to be stable up to 800°C for 35 min.  相似文献   

12.
Lead sulfide (PbS) thin films were prepared on soda lime glass substrates at room temperature by Chemical Bath Deposition (CBD) technique. This paper reports a comparative study of characteristic properties of as-prepared PbS thin films after thermal treatment through two different routes. Studies were carried out for as-prepared as well as rapidly and gradually annealed samples at 100, 200 and 300 °C. The characterizations of the films were carried out using X-ray diffraction, scanning electron microscopy and optical measurement techniques. The structural studies confirmed the polycrystalline nature and the cubic structure of the films. As-deposited films partly transformed to Pb2O3 when gradually annealed to 300 °C. The presence of nano crystallites was revealed by structural and optical absorption measurements. The values of average crystallite size were found to be in the range 18–20 nm. The variation in the microstructure, thickness, grain size, micro strain and optical band gap on two types of annealing were compared and analyzed. Data showed that post deposition parameters and thermal treatment strongly influence the optical properties of PbS films. Optical band gap of the film gets modified remarkably on annealing. Direct band gap energy values for rapidly and gradually annealed samples varied in the range of 1.68–2.01 eV and 1.68–2.12 eV respectively. Thus we were succeeded in tailoring direct band gap energies by post deposition annealing method.  相似文献   

13.
CuCr0.93Mg0.07O2 thin films were successfully deposited by DC reactive magnetron sputtering at 1123 K from metallic targets. The influence of film thickness on the structural and optoelectronic properties of the films was investigated. X-ray diffraction (XRD) results revealed that all the films had a delafossite structure with no other phases. The optical and electrical properties were investigated by UV–VIS spectrophotometer and Hall measurement, respectively. It was found that the optoelectronic properties exhibited a thickness-dependent behavior. The optical band gap and the average transmittance of the films showed a monotonous decrease with respect to the increase in thickness. The average transmittance in the visible region decreased from 67% to 47% as the thickness increased from ~70 nm to ~280 nm. Simultaneously, the conductivity of the films fell from 1.40 S∙cm−1 to 0.27 S∙cm−1. According to Haacke's figure of merit (FOM), a film with a maximum FOM value of about 1.72×10−7 Ω−1 can be achieved when the thickness is about 70 nm (σ≈ 1.40 S·cm−1 and Tav. ≈67%).  相似文献   

14.
Gallium (Ga)-doped zinc oxide (ZnO:Ga) transparent conductive films were deposited on glass substrates by DC reactive magnetron sputtering. Effects of deposition pressure on the structural, electrical and optical properties of ZnO:Ga films were investigated. X-ray diffraction (XRD) studies show that the films are highly oriented with their crystallographic c-axis perpendicular to the substrate almost independent of the deposition pressure. The morphology of the film is sensitive to the deposition pressure. The transmittance of the ZnO:Ga thin films is over 90% in the visible range and the lowest resistivity of ZnO:Ga films is 4.48×10−4 Ω cm.  相似文献   

15.
Gallium-doped zinc oxide (GZO) thin films with very high conductivity and transparency were successfully deposited by RF magnetron sputtering at a substrate temperature of 400 °C. The dependence of the film properties over the thickness was investigated. X-ray diffraction (XRD) results revealed the polycrystalline nature of the films with hexagonal wurtzite structure having preferential orientation along [001] direction normal to the substrate. The lowest resistivity obtained from electrical studies was 5.4×10−4 Ω cm. The optical properties were studied using a UV–vis spectrophotometer and the average transmittance in the visible region (400–700 nm) was found to be 92%, relative to the transmittance of a soda–lime glass reference for a GZO film of thickness 495 nm and also the transparency of the films decreases in the near IR region of the spectra. The mobility of the films showed a linear dependence with crystallite size. GZO film of thickness 495 nm with the highest figure of merit indicates that the GZO film is suitable as an ideal transparent conducting oxide (TCO) material for solar cell applications.  相似文献   

16.
We report a facile and low-cost successive ionic layer adsorption and reaction method to synthesize nanocrystalline CuO thin films. Influence of deposition cycles on the physical properties of nanocrystalline CuO thin films was investigated. X-ray diffraction studies show that all the films exhibit polycrystalline nature with monoclinic crystal structure. Fourier transform infrared spectroscopy and Raman studies confirmed the formation of single phase CuO wherein the characteristic vibrational mode of CuO was identified. Scanning electron microscopy studies revealed the formation of sporadic growth of rod-shaped elongated particles. Both the structural and surface properties of CuO thin films were improved with the increase in the deposition cycles as a result of which the optical absorption edge of CuO shift towards longer wavelength, and the optical band gap energy decreases from 2.48 eV to 2.31 eV. The room-temperature photoluminescence spectrum showed blue emission band centered at 468 nm, attributed to the near-band-edge emission of CuO due to Burstein–Moss effect.  相似文献   

17.
Antimony selenide (Sb2Se3) films were deposited by chemical bath deposition on glass substrates. Deposited films were characterized by X-ray diffraction, scanning electron microscopy and UV–vis–NIR spectroscopy. X-ray analysis of these films confirms an orthorhombic structure. Evaluation of band gap from optical spectra shows absorption due to indirect transition occurring at 1.16 eV. For the first time, optical properties including refractive index, extinction coefficient, optical conductivity, reflectivity, absorption coefficient and energy-loss spectrum were calculated by a self-consistent approach using the Wien2k code.  相似文献   

18.
Transparent and conducting cadmium oxide (CdO) and manganese doped CdO (Mn: CdO) thin films were deposited using a low cost spray pyrolysis method on the glass substrate at 300 °C. For Mn doping, various concentrations of manganese acetate (1–3 wt%) was used in the spraying precursor solution. The structural, electrical and optical properties of CdO and Mn: CdO films were investigated using X-ray diffraction (XRD), scanning electron microscope (SEM), atomic force microscope (AFM), UV–vis and Hall measurement. X-ray diffraction study reveals that the CdO and Mn: CdO films are possessing cubic crystal structures. SEM and AFM studies reveal that the grain size and roughness of the films are increased with increasing Mn doping concentration. Optical transmittance spectra of the CdO film decreases with increasing doping concentration of manganese. The optical band gap of the films decreases from 2.42 eV to 2.08 eV with increasing concentration of manganese. A minimum resistivity of 1.11×10−3 Ω cm and maximum mobility of 20.77 cm2 V−1 s−1 is achieved for 1 wt% of manganese doping.  相似文献   

19.
Nanocrystalline CdO thin films were prepared onto a glass substrate at substrate temperature of 300 °C by a spray pyrolysis technique. Grown films were annealed at 250, 350, 450 and 550 °C for 2.5 h and studied by the X-ray diffraction, Hall voltage measurement, UV-spectroscopy, and scanning electron microscope. The X-ray diffraction study confirms the cubic structure of as-deposited and annealed films. The grain size increases whereas the dislocation density decreases with increasing annealing temperature. The Hall measurement confirms that CdO is an n-type semiconductor. The carrier density and mobility increase with increasing annealing temperature up to 450 °C. The temperature dependent dc resistivity of as-deposited film shows metallic behavior from room temperature to 370 K after which it is semiconducting in nature. The metallic behavior completely washed out by annealing the samples at different temperatures. Optical transmittance and band gap energy of the films are found to decrease with increasing annealing temperature and the highest transmittance is found in near infrared region. The refractive index and optical conductivity of the CdO thin films enhanced by annealing. Scanning electron microscopy confirms formation of nano-structured CdO thin films with clear grain boundary.  相似文献   

20.
Antibacterial capabilities of nanocrystalline cadmium sulfide (CdS) thin films have been developed against Gram-positive and Gram-negative bacteria in dark and sunlight at 60 °C. For this purpose, a strain of Gram-positive Staphylococcus aureus, and two strains of Gram-negative bacteria (Pseudomonas aeruginosa, and Escherichia coli) were used. The nanocrystalline CdS thin films have been prepared using a chemical bath deposition (CBD) method at different thicknesses (50, 80 and 100 nm). The different deposition parameters including the speed of rotation of substrate, temperature of chemical bath, pH of solution and time of the deposition were optimized. The Polyvinylpyrrollidone (PVP) was successfully used as capping agent in order to stop the agglomeration in the CdS thin films. It was found that, CdS thin films have remarkable antibacterial activity in dark and sunlight and it could be applied as antimicrobial agent in medical field. In order to confirm the crystalline structure of CdS thin films, the polycrystalline nature of the deposited CdS thin films with hexagonal structure was obtained. Furthermore, the structural parameters including lattice parameters, cell volume, the space group, average grain size, dislocation density and the strain have been calculated. The topography and surface roughness of the CdS thin films have been studied before and after the bacteriostatic effect using Scanning Electron Microscopy (SEM). Furthermore, the compositions of nanocrystalline CdS thin films have been evaluated using Energy Dispersive X-ray emission (EDX) and a Transmission Electron Microscope (TEM). Based on the optical measurements in the range of 300–2500 nm, the band gap energy of the prepared CdS thin films was found to be 2.4 eV.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号