共查询到20条相似文献,搜索用时 140 毫秒
1.
由中国石油吉化股份有限公司有机合成厂与中国石油吉林石化公司研究院合作开发的用于润滑油改性的乙丙共聚物 (J 0 0 5 0 )产品 ,于2 0 0 1年 5月 1 0日在北京通过了由中国石油集团公司科技评估中心组织的鉴定。国内合成橡胶及润滑油行业的知名专家对该产品给予了高度评价 ,一致认为 :“该产品经过小试研究 ,直接在引进的 2万t·a- 1 EPR装置上实现了工业化生产 ,生产工艺技术成熟可靠 ,产品质量稳定”。台架试验和应用试验结果表明 ,这种产品的主要性能指标达到国外同类产品水平 ,填补了国内空白 ,居国际先进水平 ,可替代进口产品 ,… 相似文献
2.
乙丙共聚物粘度指数改进剂应用前景广阔 总被引:2,自引:0,他引:2
大山 《精细化工原料及中间体》2004,(5):15-15,14
粘度指数改进剂主要用于调配多级油,改善粘温性能,改善低温启动性和泵送性,减少发动机油耗和磨损。乙丙共聚物粘度指数改进剂热稳定性好,稠化能力强,在柴油机中积炭少,剪切稳定性好,用作柴油机气缸润滑油的粘度指数改进剂尤为合适。20 相似文献
3.
5.
由吉化有机合成厂和吉化研究院共同承担的润滑油改性用乙丙共聚物 (J 0 0 50 )研制项目于 2 0 0 0年 1月 2 5日通过吉化公司组织的专家验收。乙丙共聚物作为润滑油粘度指数改进剂因具有良好综合性能而得到广泛应用 ,其突出的特点是热稳定性好、稠化能力强 ,在柴油机中积炭少、剪切稳定性好 ,尤其适于作柴油机气缸润滑油的粘度指数改进剂。吉化公司有机合成厂引进日本三井油化的 2万t·a-1 的EPDM装置虽有 2 4个牌号 ,但其产品均不适用于润滑油改性 ,国内润滑油改性用乙丙共聚物全部依赖进口。润滑油改性用乙丙共聚物 (J 0 0 50 )的… 相似文献
6.
7.
粘度指数改进剂主要用于调配多级油,改善粘温性能,改善低温启动性和泵送性,减少发动机油耗和磨损。乙丙共聚物粘度指数改进剂热稳定性好,稠化能力强,在柴油机中积炭少,剪切稳定性好,用作柴油机气缸润滑油的粘度指数改进剂尤为合适。20世纪60年代末、70年代初美国几大公司以及意大利AgipPetroli等公司先后开发成功乙丙共聚物粘度指数改进剂(包括三系物、OCP)。其产品除了具有高稠化能力、好的剪切稳定性、粘温性能等优点外,又因为其生产原料来源丰富、生产工艺简单、产品价格便宜、综合性能超群而得到广泛的应用。到20世… 相似文献
8.
9.
由吉林石化分公司研究院与吉林化学股份公司有机合成厂共同开发的一项具有国际先进水平的科研新成果———用于润滑油改性的乙丙共聚物系列产品,日前获中国石油天然气集团公司技术创新二等奖。这项技术是针对国内市场需求,以引进日本三井油化年产2 0kt乙丙橡胶装置为基础,以乙烯、丙烯为主要原料,采用改性钒、铝为催化体系,己烷为溶剂,氢气为相对分子质量调节剂的基础上,制定了研究方案,通过试验验证了方案的可行性,J - 0 0 5 0经过小试研究,样品达到了国外同类产品水平。J - 0 0 5 0由小试直接实现工业化,通过在年产2 0kt乙丙橡胶装置上进… 相似文献
10.
粘度指数改进剂主要用于调配多级油,改善粘温性能,改善低温启动性和泵送性,减少发动机油耗和磨损。乙丙共聚物粘度指数改进剂热稳定性好,稠化能力强,在柴油机中积炭少,剪切稳定性好,用作柴油机气缸润滑油的粘度指数改进剂尤为合适。60年代末、70年代初美国几大公司如:Exxon Co、DuPont Co、Amoco Co、Ethyl Co、Texaco Co以及意大利Agip Petroli等公司先后开发成功乙丙共聚物粘度指数改进剂(包括三系物、OCP)。其产品除了具有高稠化能力、好的剪切稳定性、粘温性能、氧化安定性等优点外,又因为其生产原料来源丰富、生产工艺简单、产品价格便宜、综合性能超群而得到广泛 相似文献
11.
12.
以具有较低门尼黏度的三元乙丙橡胶(EPDM)为原料,通过添加引发剂与提高双螺杆挤出机螺杆转速的应力诱导复合引发方法,研究EPDM与马来酸酐(MAH)的官能化反应,表征官能化产物胺化反应后作为分散型黏度指数改进剂的性能。结果表明:官能化反应主要是由引发剂引发和应力诱导引发共同作用所完成;所得分散型黏度指数改进剂的增稠能力都随着螺杆转速的增加而增大,当螺杆转速为800 r/min时,黏度指数达218,稠化能力最强为14.47 mm2/s。当胺化物加入量为0.24%时,黏度指数改进剂的黏度指数达223,稠化能力达到最大值14.74 mm2/s。 相似文献
13.
14.
发动机燃油碳烟颗粒不可避免地会进入润滑油中,引起润滑油黏度的增长,从而影响发动机的润滑特性和使用性能。借助傅里叶红外光谱仪、X射线光电子能谱仪、全自动微孔物理吸附和化学吸附分析仪、光学法接触角/界面张力仪、Zeta电位仪等仪器,对比分析了生物质燃油碳烟颗粒(BS)和0#柴油碳烟颗粒(DS)的表面特性,探讨了BS和DS对液体石蜡(LP,润滑油基础油的模拟物)和碳烟分散体系的黏度的影响及碳烟表面特性对黏度的影响机理。结果表明,40℃时油品的相对黏度随碳烟浓度的增加呈指数函数增加,并且相同碳烟浓度下DS污染的油品相对黏度更大,高浓度碳烟污染的油品呈明显剪切稀化行为,DS污染的LP的黏度受剪切转速的影响更大。BS和DS表面主要元素是碳和氧,且BS氧含量高于DS,表面均带有一些含氧官能团。 表面特性分析显示,DS的比表面积大于BS,表面能高于BS,亲油性弱于BS,致使DS在LP中比BS更易团聚成大颗粒,这是DS对润滑油黏度的影响大于BS的主要原因。 相似文献
15.
I‐Chun Liou Raymond Chien‐Chao Tsiang James Wu Jin‐Shang Liou Hun‐Chang Sheu 《应用聚合物科学杂志》2002,83(9):1911-1918
A saturated star‐shaped poly(ethylene‐co‐propylene) copolymer, (EP)star, has been synthesized for use as a viscosity index improver in lubricants. Polyisoprene arms were first anionically synthesized using n‐butyllithium as the initiator, followed by a linking reaction with divinylbenzene at the optimum temperature of 60°C. The resulting star‐shaped polyisoprene, (I)star, was then hydrogenated to eliminate the double bonds of the polyisoprene forming the poly(ethylene‐co‐propylene) structure. The degree of branching (number of arms on each molecule) increases with increase in the mole ratio of divinylbenzene to n‐butyllithium. Increasing the arm length adversely affects the linking efficiency and a minimum amount of tetrahydrofuran (THF) at a THF:n‐butyllithium molar ratio of 1.12 was needed in order to achieve a maximum linking efficiency of approximately 85%. The Tg of poly(ethylene‐co‐propylene) is about 10°C higher than that of the original polyisoprene. Compared with (I)star, (EP)star has a thermal decomposition temperature that is 50°C higher but is independent of the arm length or the degree of branching. Viscosity measurement results for (EP)star reveal that intrinsic viscosity depends only on the arm length but not the degree of branching. Adding 1 wt % of (EP)star markedly increases the viscosity index of a LN base oil. The addition of 1 wt % of (EP)star increases the viscosity index (95 for base oil) up to a number between 111 and 145, with the exact number depending upon its arm length and degree of branching. With a fixed arm length, an (EP)star having a higher degree of branching increases the viscosity index more than one having a lower degree of branching. On the other hand, the viscosity index increases with increase in the arm length when the degree of branching is fixed. Adding 1 wt % of (EP)star also causes a change in the pour point of the lubricant with the pour point decreasing with increase in the degree of branching. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 83: 1911–1918, 2002 相似文献
16.
Lubricating mineral base oils are normally extracted from lube-oil cuts with furfural solvent.Aromatic content in the raffinate phase from extraction process is an essential parameter that affects the quality of the lubricating base-oils.For determination of aromatic content by the usual ASTM D3238 method,density,refractive index and molecular weight of the raffinate are required.In this work,a new generalized correlation is developed for de-termination the aromatic content by using only the measured viscosity of lubricating oil.With a mole fraction of aromatic compounds,the kinematic viscosity may be obtained at any temperature between 60-100°C along with their molecular weight and refractive index. 相似文献
17.
Tseng‐Yeong Wang Raymond Chien‐Chao Tsiang Jin‐Shang Liou James Wu Hun‐Chang Sheu 《应用聚合物科学杂志》2001,79(10):1838-1846
A saturated star‐shaped polystyrene‐b‐poly(ethylene‐co‐propylene) block copolymer, (SEP)star, was synthesized for use as a viscosity index improver in lubricants. Polystyrene‐b‐polyisoprene arms were first made anionically, followed by a linking reaction at the optimum temperature of 60°C with divinylbenzene. The resulting star‐shaped (SI)star was hydrogenated to eliminate the double bonds on the polyisoprene segment, thus forming the star‐shaped (SEP)star. The number of arms on each molecule increased with an increase in the mol ratio of divinylbenzene to n‐butyllithium. Increasing the arm length adversely affected the linking efficiency but caused a slight increase in the degree of branching. The Tg of the poly(ethylene‐co‐propylene) block was 13°C higher than that of the original polyisoprene block. Compared with (SI)star, (SEP)star has a thermal decomposition temperature 50°C higher but independent of the arm length or the degree of branching. Viscosity measurements for (SEP)star revealed that intrinsic viscosity depends only on the arm length, but not on the degree of branching. Adding 1 wt % of (SEP)star markedly increased the viscosity index of a HN base oil. With a fixed arm length, a (SEP)star having a higher degree of branching increased the viscosity index more than that having a lower degree of branching. On the other hand, the viscosity index increased with an increase in the arm length when the degree of branching was fixed. The addition of 1wt % of (SEP)star increased the vioscosity index up to a number between 111 and 166, with the exact number depending upon its arm length and degree of branching. © 2001 John Wiley & Sons, Inc. J Appl Polym Sci 79: 1838–1846, 2001 相似文献
18.
19.
Recently, bio-derived materials such as vegetable oils are significantly employed in lubricating oil formulations due to its high flash point, high lubricity, low evaporation loss, renewability, biodegradability, and eco-friendliness when compared to mineral oil. We investigated the performance of seven poly(alkyl lactate acrylate)s as viscosity modifiers in two vegetable oils, namely, coconut oil and sunflower oil, which differ in the percentage of polar compounds and degree of unsaturation. Poly(alkyl lactate acrylate)s having alkyl as hexyl to dodecyl group in different concentrations between 1 and 2 wt% were added to coconut and sunflower oil and parameters such as thickening power or Q factor, kinematic viscosity (μ), and viscosity index (VI) were calculated. The μ values at 40°C and 100°C of vegetable oils studied were lower than commercially available SAE20W40 engine oil, but the VI of coconut and sunflower oil was higher by about 22%. Value of Q factor higher than 1, indicated that these poly(alkyl lactate acrylate)s were VI improvers. VI increased with increase in the polymer concentration in both the vegetable oils. The length of the alkyl side chain of these polymers and the polarity of vegetable oil had predominant effect in determining the values of VI of vegetable oils. By using these polymer additives, VI was improved by 85.5% in coconut oil and by 61.7% in sunflower oil. Varying the concentration and alkyl group of these additives, one can largely modify the viscosity ranges enabling them to be used in different lubricating applications. 相似文献