首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
This study aimed to determine gender-based differences in fuel metabolism in response to long-duration exercise. Fuel oxidation and the metabolic response to exercise were compared in men (n = 14) and women (n = 13) during 2 h (40% of maximal O2 uptake) of cycling and 2 h of postexercise recovery. In addition, subjects completed a separate control day on which no exercise was performed. Fuel oxidation was measured using indirect calorimetry, and blood samples were drawn for the determination of circulating substrate and hormone levels. During exercise, women derived proportionally more of the total energy expended from fat oxidation (50.9 +/- 1.8 and 43. 7 +/- 2.1% for women and men, respectively, P < 0.02), whereas men derived proportionally more energy from carbohydrate oxidation (53.1 +/- 2.1 and 45.7 +/- 1.8% for men and women, respectively, P < 0.01). These gender-based differences were not observed before exercise, after exercise, or on the control day. Epinephrine (P < 0.007) and norepinephrine (P < 0.0009) levels were significantly greater during exercise in men than in women (peak epinephrine concentrations: 208 +/- 36 and 121 +/- 15 pg/ml in men and women, respectively; peak norepinephrine concentrations: 924 +/- 125 and 659 +/- 68 pg/ml in men and women, respectively). As circulating glycerol levels were not different between the two groups, this suggests that women may be more sensitive to the lipolytic action of the catecholamines. In conclusion, these data support the view that different priorities are placed on lipid and carbohydrate oxidation during exercise in men and women and that these gender-based differences extend to the catecholamine response to exercise.  相似文献   

2.
The purpose of this study was to compare the rates of muscle deoxygenation in the exercising muscles during incremental arm cranking and leg cycling exercise in healthy men and women. Fifteen men and 10 women completed arm cranking and leg cycling tests to exhaustion in separate sessions in a counterbalanced order. Cardiorespiratory measurements were monitored using an automated metabolic cart interfaced with an electrocardiogram. Tissue absorbency was recorded continuously at 760 nm and 850 nm during incremental exercise and 6 min of recovery, with a near infrared spectrometer interfaced with a computer. Muscle oxygenation was calculated from the tissue absorbency measurements at 30%, 45%, 60%, 75% and 90% of peak oxygen uptake (VO2) during each exercise mode and is expressed as a percentage of the maximal range observed during exercise and recovery (%Mox). Exponential regression analysis indicated significant inverse relationships (P < 0.01) between %Mox and absolute VO2 during arm cranking and leg cycling in men (multiple R = -0.96 and -0.99, respectively) and women (R = -0.94 and -0.99, respectively). No significant interaction was observed for the %Mox between the two exercise modes and between the two genders. The rate of muscle deoxygenation per litre of VO2 was 31.1% and 26.4% during arm cranking and leg cycling, respectively, in men, and 26.3% and 37.4% respectively, in women. It was concluded that the rate of decline in %Mox for a given increase in VO2 between 30% and 90% of the peak VO2 was independent of exercise mode and gender.  相似文献   

3.
The effect of creatine loading on endurance capacity and sprint performance was investigated in elite cyclists according to a double-blind cross-over study design. Subjects (n = 12) underwent on 3 occasions and separated by 5 week wash-out periods, a 2 h 30 min standardized endurance protocol on their own race bicycle, which was mounted on an electromagnetically braked roller-system, whereupon they cycled to exhaustion at their predetermined 4 mmol lactate threshold. Immediately thereafter they performed 5 maximal 10 second sprints, separated by 2 min recovery intervals, on a Monark bicycle ergometer at 6 kg resistance on the flywheel. Before the exercise test, subjects were either creatine loaded (C: 25 g creatine monohydrate/day, 5 days) or were creatine loaded plus ingested creatine during the exercise test (CC: 5 g/h), or received placebo (P). Compared with P, C but not CC increased (p<0.05) peak and mean sprint power output by 8-9% for all 5 sprints. Endurance time to exhaustion was not affected by either C or CC. It is concluded that creatine loading improves intermittent sprint capacity at the end of endurance exercise to fatigue. This ergogenic action is counteracted by high dose creatine intake during exercise.  相似文献   

4.
The purpose of the present study was to determine whether the linear relationship between CO2 output (VCO2) and pulmonary ventilation (VE) is altered during incremental cycling performed after exercise-induced metabolic acidosis. Ten untrained, female subjects performed two incremental cycling tests (15 W x min(-1) up to 165 W) on separate days. One incremental exercise test was conducted without prior exercise, whereas the other test was preceded by a 1-min bout of maximal cycling. The ventilatory equivalent for O2 (VE/VO2) was only elevated above control values at 15-60 W during incremental cycling performed after high-intensity exercise. In contrast, the ventilatory equivalent for CO2 (VE/VCO2) was significantly increased above control levels at nearly every work stage of incremental work (all except 165 W). Hyperventilation relative to VCO2 was confirmed by the significantly lower end-tidal CO2 tension (P(ET)CO2) obtained throughout the incremental cycling that was performed after high-intensity exercise (except at 165 W). VE and VCO2 were significantly correlated under both treatment conditions (r > 0.99; P < 0.001). Moreover, both the slope and y-intercept of the linear regression were found to be significantly elevated during the incremental cycling performed after high-intensity cycling compared to control conditions (P < 0.01). The increase in the slope of the VE-VCO2 relationship during incremental exercise performed under these conditions does not represent an uncoupling of VE from VCO2, but could be accounted for by the significantly lower P(ET)CO2 observed during exercise.  相似文献   

5.
Investigations examining the ergogenic and metabolic influence of caffeine during short-term high-intensity exercise are few in number and have produced inconsistent results. This study examined the effects of caffeine on repeated bouts of high-intensity exercise in recreationally active men. Subjects (n = 9) completed four 30-s Wingate (WG) sprints with 4 min of rest between each exercise bout on two separate occasions. One hour before exercise, either placebo (P1; dextrose) or caffeine (Caf; 6 mg/kg) capsules were ingested. Caf ingestion did not have any effect on power output (peak or average) in the first two WG tests and had a negative effect in the latter two exercise bouts. Plasma epinephrine concentration was significantly increased 60 min after Caf ingestion compared with P1; however, this treatment effect disappeared once exercise began. Caf ingestion had no significant effect on blood lactate, O2 consumption, or aerobic contribution at any time during the protocol. After the second Wingate test, plasma NH3 concentration increased significantly from the previous WG test and was significantly higher in the Caf trial compared with P1. These data demonstrate no ergogenic effect of caffeine on power output during repeated bouts of short-term, intense exercise. Furthermore, there was no indication of increased anaerobic metabolism after Caf ingestion with the exception of an increase in NH3 concentration.  相似文献   

6.
PURPOSE: Twelve healthy men (26.4 yr) and women (26.8 yr) were compared at rest and after cycling for 25 min at 60 and 80% VO2max to determine whether gender and menstrual cycle influenced circulating beta-endorphin concentration (BE). METHODS: VO2max was determined on a cycle ergometer, and subjects completed the exercise in a randomized order. Women were tested in both the luteal (L) and follicular (F) phases of their menstrual cycle, which was confirmed by their blood estrogen levels. All tests were conducted in the morning after a 30-min rest (12-h postabsorptive). An indwelling venous catheter placed in a forearm vein enabled blood sampling at rest, 25 min of cycling, and 25 min of recovery. RESULTS: Resting BE was similar for men before both 60 and 80% intensities of exercise, 5.27 +/- 0.43 and 5.30 +/- 0.33 pmol.mL-1, respectively. BE was not significantly changed at 60% VO2max (6.54 +/- 0.33 pmol.mL-1) but significantly increased at 80% VO2max (11.90 +/- 1.98 pmol.mL-1). Women tended to have slightly lower BE during the L compared with F, but this did not reach significance (L = 4.40 +/- 0.22, F = 4.73 +/- 0.30 pmol.mL-1). Cycling at 60% VO2max did not significantly increase BE in the L (5.41 +/- 0.42 pmol.mL-1) nor the F (5.35 +/- 0.40 pmol.mL-1). Cycling at 80% VO2max increased BE to a similar extent in both the L and F phase, respectively (10.44 and 10.96). Although the BE concentrations tended to be slightly lower in women compared with men at 80% VO2max, this did not reach statistical significance. CONCLUSIONS: These data suggest that women cycling at 80% VO2max will have a similar BE response to men independent of their menstrual cycle. BE in women at rest and who exercise at lower exercise intensities may have slightly lower BE levels then men independent of the time of the women's menstrual cycle.  相似文献   

7.
The present experiment was designed to investigate whether a diet-induced metabolic acidosis was a major factor in the earlier onset of fatigue during high-intensity exercise. Six healthy males cycled to exhaustion at a workload equivalent to 95 percent of maximum oxygen uptake on four separate occasions. Exercise tests were performed after an overnight fast and each test was preceded by one of four experimental conditions. Two experimental diets were designed, either to replicate each subject's own normal diet [N diet, mean (SD) daily energy intake (E) = 13 (0.7) MJ, 14.5 (0.8) percent protein (Pro), 37.5 (2.2) percent fat (Fat) and 47.5 (2.1) percent carbohydrate (CHO)], or a low-carbohydrate diet [E = 12.6 (0.8) MJ, 33.6 (1.3) percent Pro, 64.4 (1.5) percent Fat and 2.2 (0.4) percent CHO]. These diets were prepared and consumed within the department over a 3-day period. Over a 3-period prior to the exercise trial subjects ingested either NaHCO(3) or CaCO(3) (3.6 and 3.0 mmol*kg body mass), thus giving four experimental conditions: N diet and treatment, N diet and placebo, low-CHO diet and treatment and low-CHO diet and placebo. Treatments were assigned using a randomised protocol. Arterialised venous blood samples were taken for the determination of acid-base status and metabolite concentrations at rest prior to exercise and at intervals for 30 min following exhaustion. Consumption of the low-CHO diet induced a mild metabolic acidosis which was reversed by the ingestion of NaHCO(3). Blood pH, bicarbonate (HCO-(3)) and base excess (BE) were higher following NaHCO(3) ingestion after the normal diet than all of the other experimental conditions (P <0.01). Exercise time following the low-CHO diet was less than on the normal diet conditions (P <0.05): bicarbonate ingestion had no effect on exercise time on either of the diet conditions. Post-exercise blood pH, HCO-(3); and BE were higher following the ingestion of NaHCO(3) irrespective of the pre-exercise diet (P <0.05). Blood lactate concentration was higher 2 min after exercise following the N diet with NaHCO(3) when compared to the low-CHO diets with either NaHCO(3) or placebo (P <0.05). Plasma ammonia accumulation was not significantly different between experimental conditions. These data confirm previous data showing that the ingestion of a low-CHO diet reduces the capacity to perform high-intensity exercise, but it appears that the metabolic acidosis induced by the low-CHO diet is not the cause of the reduced exercise capacity observed during high-intensity exercise under these conditions.  相似文献   

8.
When exercise to exhaustion is performed using at least two different intensities, work to fatigue (Wlim) can be expressed as a linear function of time to fatigue (Tlim). Whereas the slope of this function is related to endurance ability, the y-intercept is associated with the potential to perform high intensity interval exercise. The purpose of the present investigation was to determine the influence of 8-wk intermittent high-intensity exercise training on the y-intercept derived from the Wlim-Tlim relationship. Eight healthy, untrained male students (19.1 +/- 0.6 yr) completed five 60-s bouts of maximal exercise on the cycle ergometer, three times a week, for 8 wk. Seven controls avoided regular activity for the same period. Prior to and immediately following the training period, the Wlim-Tlim relationship, VO2max, and total work completed in five 60-s exercise bouts on the cycle ergometer were determined. Correlational analysis established relationships between the y-intercept and total work accomplished in the interval test pre- (r = 0.90; P < 0.01; N = 15) and post-training (r = 0.92; P < 0.01; N = 15), confirming that the y-intercept is related to the ability to perform exercise of this nature. Moreover, the "anaerobic" energy yield, calculated from total work and oxygen consumed during the interval exercise, was also related to the y-intercept (r = 0.78; P < 0.01). Interval training significantly increased both the y-intercept (P = 0.0015) and total work accomplished in the interval test (P = 0.001), while the slope of the Wlim-Tlim relationship (critical power) remained unchanged.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

9.
This study aimed to compare the effects of oral creatine (Cr) supplementation with creatine supplementation in combination with caffeine (Cr+C) on muscle phosphocreatine (PCr) level and performance in healthy male volunteers (n = 9). Before and after 6 days of placebo, Cr (0.5 g x kg-1 x day-1), or Cr (0.5 g x kg-1 x day-1) + C (5 mg x kg-1 x day-1) supplementation, 31P-nuclear magnetic resonance spectroscopy of the gastrocnemius muscle and a maximal intermittent exercise fatigue test of the knee extensors on an isokinetic dynamometer were performed. The exercise consisted of three consecutive maximal isometric contractions and three interval series of 90, 80, and 50 maximal voluntary contractions performed with a rest interval of 2 min between the series. Muscle ATP concentration remained constant over the three experimental conditions. Cr and Cr+C increased (P < 0.05) muscle PCr concentration by 4-6%. Dynamic torque production, however, was increased by 10-23% (P < 0.05) by Cr but was not changed by Cr+C. Torque improvement during Cr was most prominent immediately after the 2-min rest between the exercise bouts. The data show that Cr supplementation elevates muscle PCr concentration and markedly improves performance during intense intermittent exercise. This ergogenic effect, however, is completely eliminated by caffeine intake.  相似文献   

10.
Normal male (n = 29) and female (n = 39) medical students with a mean age of 19.2 years who were nonsmokers, with no personal history of allergy were studied. The bronchial lability was assessed from peak expiratory flows and forced expiratory spirograms taken before, during and upto 45 minutes after a standard exercise using the Harvard steps. Women had a significantly lower (P < .001) resting FVC, FEV1, FEF 25-75% and PEF as compared to men. Although the exercise lability index was not significantly different in men and women, the latter showed a greater percent increase (P < .02) and a lesser percent decrease (P < .02) of PEF during and after the exercise respectively. They also showed a significantly (P < .005) faster recovery to normal. These results suggest that airway dynamics may be better in women than in men. This could account for the lower incidence and morbidity from respiratory allergic disease seen in women as compared to men.  相似文献   

11.
To determine how osmolality of an orally ingested fluid-replacement beverage would alter intestinal fluid absorption from the duodenum and/or jejunum during 85 min of cycle exercise (63.3 +/- 0.9% peak O2 uptake) in a cool environment (22 degreesC), seven subjects (5 men, 2 women, peak O2 uptake = 54.5 +/- 3.8 ml . kg-1 . min-1) participated in four experiments separated by 1 wk in which they ingested a water placebo (WP) or one of three 6% carbohydrate (CHO) beverages formulated to give mean osmolalities of 197, 295, or 414 mosmol/kgH2O. CHO solutions also contained 17-18 meq Na+ and 3.2 meq K+. Nasogastric and multilumen tubes were fluoroscopically positioned in the gastric antrum and duodenojejunum, respectively. Subjects ingested a total of 23 ml/kg body mass of the test solution, 20% (370 +/- 9 ml) of this volume 5 min before exercise and 10% (185 +/- 4 ml) every 10 min thereafter. By using the rate of gastric emptying as the rate of intestinal perfusion (G. P. Lambert, R. T. Chang, D. Joensen, X. Shi, R. W. Summers, H. P. Schedl, and C. V. Gisolfi. Int. J. Sports Med. 17: 48-55, 1996), intestinal absorption was determined by segmental perfusion from the duodenum (0-25 cm) and jejunum (25-50 cm). There were no differences (P > 0.05) in gastric emptying (mean 18.1 +/- 1.3 ml/min) or total fluid absorption (802 +/- 109, 650 +/- 52, 674 +/- 62, and 633 +/- 74 ml . 50 cm-1 . h-1 for WP, hypo-, iso-, and hypertonic solutions, respectively) among beverages; but WP was absorbed faster (P < 0.05) from the duodenum than in the jejunum. Of the total volume of fluid ingested, 82 +/- 14, 74 +/- 6, 76 +/- 5, and 68 +/- 7% were absorbed for WP, hypo-, iso-, and hypertonic beverages, respectively. There were no differences in urine production or percent change in plasma volume among solutions. We conclude that total fluid absorption of 6% CHO-electrolyte beverages from the duodenojejunum during exercise, within the osmotic range studied, is not different from WP.  相似文献   

12.
The aim of the study was to examine prevalence and duration/seriousness of gastrointestinal (GI) problems as a function of carbohydrate-rich (CHO) supplements and mode of exercise. The relationship between GI problems and a variety of physiological and personal factors (age, exercise experience) was also examined. Thirty-two male tri-athletes performed three experimental trials at 1-wk intervals, each trial on a different supplement: a conventional, semisolid supplement (S; 1.2 g CHO, 0.1 g protein, and 0.02 g fat.kg BW-1 x h-1); an almost isocaloric fluid supplement (F; 1.3 g CHO.kg BW-1 x h-1, no fat, no protein); and a fluid placebo (P). The 3 h of exercise started at 75% VO2max and consisted of alternately cycling (bouts 1 and 3) and running (bouts 2 and 4). GI symptoms were monitored by a questionnaire. Analysis of variance revealed that nausea lasted longer with P as compared with S (P < 0.05). Bloating lasted longer during bout 3 with P as compared with F and S (P < 0.05). Accounting for confounding factors, most GI symptoms occurred more frequently and lasted longer during running than during cycling. Multiple regression analysis revealed significant relationships between nausea and urge to defecate, between an urge to defecate, GI cramps and flatulence, and between belching and side ache. From all other factors energy depletion, CHO malabsorption, exercise intensity, exercise experience, and age were significantly related to GI symptoms during the exercise.  相似文献   

13.
The present study examined the oxidation of exogenous galactose or glucose during prolonged submaximal cycling exercise. Eight highly trained volunteers exercised on two occasions on a cycle ergometer at 65% of maximal workload for 120 min, followed by a 60-min rest period and a second exercise bout of 30 min at 60% maximal workload. At random, subjects ingested a 8% galactose solution to which an [1-13C]galactose tracer was added or a 8% glucose solution to which an [U-13C]glucose tracer was added. Drinks were provided at the end of the warm-up period (8 ml/kg) and every 15 min (2 ml/kg) during the first 120 min of the test. Blood and breath samples were collected every 30 and 15 min, respectively, during the test. The exogenous carbohydrate (CHO) oxidation was calculated from the 13CO2/12CO2 ratio and CO2 production of the expired air. Peak exogenous CHO oxidation during exercise for galactose and glucose was 0.41 +/- 0.03 and 0.85 +/- 0.04 g/min, respectively. Total CHO and fat oxidation were not significantly different between the treatments. Forty-six percent of the ingested glucose was oxidized, whereas only 21% of the ingested galactose was oxidized. As a consequence, more endogenous CHO was utilized with galactose than with glucose (124.4 +/- 6.7 and 100.1 +/- 3.6 g, respectively). These results indicate that the oxidation rate of orally ingested galactose is maximally approximately 50% of the oxidation rate of a comparable amount of orally ingested glucose during 120 min of exercise.  相似文献   

14.
AIMS: Benefit from exercise training in heart failure has mainly been shown in men with ischaemic disease. We aimed to examine the effects of exercise training in heart failure patients < or = 75 years old of both sexes and with various aetiology. METHODS AND RESULTS: Fifty-four patients with stable mild-to-moderate heart failure were randomized to exercise or control, and 49 completed the study (49% > or = 65 years; 29% women; 24% non-ischaemic aetiology; training, n = 22; controls, n = 27). The exercise programme consisted of bicycle training at 80% of maximal intensity over a period of 4 months. Improvements vs controls were found regarding maximal exercise capacity (6 +/- 12 vs -4 +/- 12% [mean +/- SD], P < 0.01) and global quality-of-life (2 [1] vs 0 [1] units [median ?inter-quartile range?], P < 0.01), but not regarding maximal oxygen consumption or the dyspnoea-fatigue index. All of these four variables significantly improved in men with ischaemic aetiology compared with controls (n = 11). However, none of these variables improved in women with ischaemic aetiology (n = 5), or in patients with non-ischaemic aetiology (n = 6). The training response was independent of age, left ventricular systolic function, and maximal oxygen consumption. No training-related adverse effects were reported. CONCLUSION: Supervised exercise training was safe and beneficial in heart failure patients < or = 75 years, especially in men with ischaemic aetiology. The effects of exercise training in women and patients with non-ischaemic aetiology should be further examined.  相似文献   

15.
The purpose of this study was to compare the anaerobic performance of 11-12 year old prepubescent boys (stage 1; n = 18) using a maximal effort 90 s cycling test to that of adult men (n = 19). Performance was separated into short-term anaerobic power (SAP; work in 10 s), intermediate-term anaerobic capacity (IAC; work in 30 s) and long-term anaerobic capacity (LAC; work in 90 s). Resistance on the Monark cycle ergometer was chosen as the highest tolerable load for the 90 s test and set at 2.6 and 3.8 J. rev-1.kg body mass-1 for boys and men, respectively. Power drop-off (%PD) was determined as the change in 5 s power outputs from 0-90 s. Blood lactates were measured at rest (pretest; BL) and at 2 (BL2) and 5 (BL5) min post test. Absolute and relative (to weight or thigh volume) scores for SAC, IAC and LAC were 33-40% lower in the boys compared to the men (p < 0.001). The men demonstrated significantly greater %PD over the 90 s (32.2%) compared to the 25.3% PD of the boys (p < 0.001), suggesting that the development of fatigue was greater in the men even though power and work outputs were high. Resting BL values were similar for both groups. Mean BL2 and BL5 were higher (p < 0.01) in the men (13.5, SD = 3.4; 12.5, SD = 2.8 mmol.l-1) than in the boys (9.1, SD = 1.7; 8.3, SD = 1.6 mmol.l-1). The anaerobic performance of the boys compared to the men cannot be completely explained by the lower resistance setting used. Although the boys were 50% lighter than the men, their resistance was 70% of that used for the men. The results do not support the contention that children and adults have similar abilities in short term, exhaustive work when corrected for size. Prepubescent boys appear to be limited in their ability to perform short-term as well as intermediate and long term anaerobic exercise compared to adult males.  相似文献   

16.
This study examined the efficacy of glycerol and water hyperhydration (1 h before exercise) on tolerance and cardiovascular strain during uncompensable exercise-heat stress. The approach was to determine whether 1-h preexercise hyperhydration (29.1 ml H2O/kg lean body mass with or without 1.2 g/kg lean body mass of glycerol) provided a physiological advantage over euhydration. Eight heat-acclimated men completed three trials (control euhydration before exercise, and glycerol and water hyperhydrations) consisting of treadmill exercise-heat stress (ratio of evaporative heat loss required to maximal capacity of climate = 416). During exercise ( approximately 55% maximal O2 uptake), there was no difference between glycerol and water hyperhydration methods for increasing (P < 0.05) total body water. Glycerol hyperhydration endurance time (33. 8 +/- 3.0 min) was longer (P < 0.05) than for control (29.5 +/- 3.5 min), but was not different (P > 0.05) from that of water hyperhydration (31.3 +/- 3.1 min). Hyperhydration did not alter (P > 0.05) core temperature, whole body sweating rate, cardiac output, blood pressure, total peripheral resistance, or core temperature tolerance. Exhaustion from heat strain occurred at similar core and skin temperatures and heart rates in each trial. Symptoms at exhaustion included syncope and ataxia, fatigue, dyspnea, and muscle cramps (n = 11, 10, 2, and 1 cases, respectively). We conclude that 1-h preexercise glycerol hyperhydration provides no meaningful physiological advantage over water hyperhydration and that hyperhydration per se only provides the advantage (over euhydration) of delaying hypohydration during uncompensble exercise-heat stress.  相似文献   

17.
The relationship between aerobic fitness and recovery from high-intensity exercise was examined in 197 infantry soldiers. Aerobic fitness was determined by a maximal-effort, 2,000-m run (RUN). High-intensity exercise consisted of three bouts of a continuous 140-m sprint with several changes of direction. A 2-minute passive rest separated each sprint. A fatigue index was developed by dividing the mean time of the three sprints by the fastest time. Times for the RUN were converted into standardized T scores and separated into five groups (group 1 had the slowest run time and group 5 had the fastest run time). Significant differences in the fatigue index were seen between group 1 (4.9 +/- 2.4%) and groups 3 (2.6 +/- 1.7%), 4 (2.3 +/- 1.6%), and 5 (2.3 +/- 1.3%). It appears that recovery from high-intensity exercise is improved at higher levels of aerobic fitness (faster time for the RUN). However, as the level of aerobic fitness improves above the population mean, no further benefit in the recovery rate from high-intensity exercise is apparent.  相似文献   

18.
The aim of this study was to investigate the effect of medium-chain triacylglycerol (MCT) ingestion during exercise on subsequent time-trial cycling performance. Seven well-trained cyclists performed four exercise trials consisting of 2 h at 60% of maximal oxygen uptake followed by a simulated time trial (ie, completion of a preset amount of work as fast as possible) of approximately 15 min duration. During the trials, subjects ingested 1) a 10% carbohydrate solution (CHO; 170 +/- 6 g glucose), 2) a 10% carbohydrate electrolyte with 5% MCT solution (CHO + MCT; 85 +/- 3 g MCT), 3) a 5% MCT solution, or 4) artificially colored and flavored water (placebo). Neither CHO nor CHO + MCT ingestion had any effect on performance compared with placebo ingestion, whereas ingestion of MCT had a negative effect on performance. Average work rates during the time trial were 314 +/- 19, 314 +/- 13, and 312 +/- 18 with CHO, CHO + MCT, and placebo, respectively, and was 17-18% lower in the MCT trial (263 +/- 22 W). In addition, compared with placebo ingestion, MCT ingestion had no effect on total rates of fat or carbohydrate oxidation, nor did it affect exogenous or endogenous carbohydrate utilization. The negative effect of MCT ingestion was associated with increased gastrointestinal complaints (ie, intestinal cramping). These data suggest that large amounts of MCTs (85 g) ingested during prolonged submaximal exercise may provoke gastrointestinal problems leading to decreased exercise performance.  相似文献   

19.
The purpose of this study was to examine the influence of the type of exercise (running vs. cycling) on the O2 uptake V(O2) slow component. Ten triathletes performed exhaustive exercise on a treadmill and on a cycloergometer at a work rate corresponding to 90% of maximal VO2 (90% work rate maximal V(O2)). The duration of the tests before exhaustion was superimposable for both type of exercises (10 min 37 s +/- 4 min 11 s vs. 10 min 54 s +/- 4 min 47 s for running and cycling, respectively). The V(O2) slow component (difference between V(O2) at the last minute and minute 3 of exercise) was significantly lower during running compared with cycling (20.9 +/- 2 vs. 268.8 +/- 24 ml/min). Consequently, there was no relationship between the magnitude of the V(O2) slow component and the time to fatigue. Finally, because blood lactate levels at the end of the tests were similar for both running (7.2 +/- 1.9 mmol/l) and cycling (7.3 +/- 2.4 mmol/l), there was a clear dissociation between blood lactate and the V(O2) slow component during running. These data demonstrate that 1) the V(O2) slow component depends on the type of exercise in a group of triathletes and 2) the time to fatigue is independent of the magnitude of the V(O2) slow component and blood lactate concentration. It is speculated that the difference in muscular contraction regimen between running and cycling could account for the difference in the V(O2) slow component.  相似文献   

20.
The gender differences in peak oxygen uptake (VO2peak) for various modes of exercise have been examined previously; however, no direct gender comparisons have been made during repetitive lifting (RL). In the present study the VO2peak between RL and treadmill running (TR) was compared between 20 men [mean (SD) age, height, body mass and body fat: 21 (3) years, 1.79 (0.06) m, 81 (9) kg, 19 (6)%, respectively] and 20 women [mean (SD) age, height, body mass and body fat: 21 (3) years, 1.63 (0.05) m, 60 (7) kg, 27 (6)%, respectively]. VO2peak (l x min[-1]), defined as the highest value obtained during exercise to volitional fatigue, was determined using discontinuous protocols with treadmill grade or box mass incremented to increase exercise intensity. For RL VO2peak, a pneumatically driven shelf was used to lower a loaded box to the floor, and subjects then lifted the box, at a rate of 15 lifts x min(-1). VO2peak (l x min(-1) and ml x kg(-1) x min[-1]) and minute ventilation (VE, l x min[-1]) were determined using an on-line gas analysis system. A two-way repeated measures analysis of variance revealed significant gender effects, with men having higher values for VO2peak (l x min(-1) and ml x kg(-1) x min[-1]) and VE, but women having higher values of the ventilatory equivalent for oxygen (VE/VO2). There were also mode of exercise effects, with TR values being higher for VO2peak (l x min(-1) and ml x kg(-1) x min[-1]) and VE and an interaction effect for VO2peak (l x min(-1) and ml x kg(-1) x min[-1]) and VE/VO2. The women obtained a greater percentage (approximately 84%) of their TR VO2peak during RL than did the men (approximately 79%). There was a marginal tendency for women to decrease and men to increase their VE/VO2 when comparing TR with RL. The magnitude of the gender differences between the two exercise modalities appeared to be similar for heart rate, VE and R, but differed for VO2peak (l x min(-1) and ml x kg(-1) x min[-1]). Lifting to an absolute height (1.32 m for the RL protocol) may present a different physical challenge to men and women with respect to the degree of involvement of the muscle groups used during lifting and ventilation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号