首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 218 毫秒
1.
采用高能球磨、放电等离子烧结以及热挤压工艺制备含量为5.0%(体积分数)的石墨烯增强铝基复合材料.分别采用X射线光电子能谱、透射电镜及拉伸试验研究挤压态复合材料的显微组织与力学性能,发现5.0%(体积分数)的石墨烯分散在铝晶界上,并且未与铝基体发生界面反应.最终,挤压态复合材料的屈服强度和抗拉强度高达462 MPa和4...  相似文献   

2.
采用热压烧结工艺制备石墨烯含量分别为0.1%、0.3%、0.5%和0.7%(质量分数)的Gr/CuCr10合金.与CuCr10合金相比,石墨烯添加量为0.3%(质量分数)的CuCr10复合材料相对密度保持不变,而电导率从62.2%(IACS)增加到69.5%(IACS).导电率增加的主要原因是石墨烯的加入导致Cr相尺寸...  相似文献   

3.
张栗源  董从林  袁成清  吴宇航 《表面技术》2021,50(11):208-217, 278
目的 探究石墨烯/高密度聚乙烯高分子材料在水润滑条件下的摩擦学性能,提高高密度聚乙烯的自润滑和耐磨损性能.方法 采用石墨烯纳米片填充高密度聚乙烯材料,利用RTEC摩擦磨损试验机,开展新型复合材料在水润滑条件下的摩擦学性能研究.通过分析新型复合材料的典型机械性能、摩擦系数、磨损形貌以及摩擦副接触表面的元素成分及分布情况,揭示石墨烯/高密度聚乙烯在水润滑条件下的摩擦磨损机理.结果 新型复合材料的拉伸强度、撕裂强度和肖氏硬度均随着石墨烯纳米片含量的增加而先增高后降低,1.5%石墨烯纳米片改性高密度聚乙烯表现出最高的强度,分别为19.81 MPa、31.34 MPa和92.6HSA.新型复合材料的平均摩擦系数和体积行程磨损率总体随着石墨烯含量的增加而减小,1.5%石墨烯纳米片改性的高密度聚乙烯平均摩擦系数和体积行程磨损率比纯高密度聚乙烯分别降低了53.6%和73.9%.Si3N4陶瓷球与1.5%、0.6%石墨烯纳米片改性高密度聚乙烯进行3600 s对磨试验,其磨损区域的碳元素质量分数分别约为3.5%和0.3%,表明含量较高的石墨烯纳米片有利于在微观界面形成石墨烯润滑层,从而降低摩擦系数.结论 石墨烯纳米片显著影响高密度聚乙烯的自润滑性能和耐磨损性能,适量的石墨烯纳米片促进了高密度聚乙烯磨损界面石墨烯润滑层的形成,降低摩擦系数和磨损量.该研究可为设计低摩擦、耐磨损的水润滑轴承复合材料提供参考.  相似文献   

4.
采用SPS放电等离子烧结法制备石墨烯-铝合金复合材料,研究石墨烯含量分别为0、0.1wt%、0.2wt%、0.3wt%、0.5wt%、1wt%、2wt%、3wt%和5wt%时,复合材料的显微硬度、摩擦系数和磨损率.结果 表明,SPS放电等离子烧结法制备的复合材料组织较为致密,石墨烯分散均匀.随着石墨烯质量分数的增加,复...  相似文献   

5.
以石墨烯为增强体,分别采用冷压-真空热压烧结(工艺1)和真空热压烧结-热挤压(工艺2)工艺制备了纯铝及石墨烯/纯铝基复合材料.对比了两种不同制备工艺对纯铝及石墨烯/纯铝基复合材料力学性能和微观组织的影响.结果表明:采用工艺2制备的复合材料,其抗拉强度比采用工艺1制备的复合材料抗拉强度高11.35%,且采用工艺2制备的复...  相似文献   

6.
为阐明低压压制成形和真空烧结制备的银-石墨烯复合材料的致密化行为,通过24 h机械球磨制得石墨烯含量0.5wt.%至2.0wt.%的银-石墨烯复合粉末,随后进行低压双向压制和真空烧结。通过测量复合材料压制后和烧结后的密度,研究了不同成形压力和不同烧结温度工艺条件下复合材料的成形能力和烧结能力。试验结果表明:银-石墨烯粉末的压制数据符合川北公夫方程。致密化系数(K)值随石墨烯含量的增加而增大,表明复合粉末抗塑性变形能力增大。银-0.5wt.%石墨烯复合材料具有最佳的烧结性能。石墨烯含量1.5wt.%的复合材料具有较好增强效果的力学性能,其抗拉强度达到252 MPa。  相似文献   

7.
采用无水乙醇中超声波震荡和高能球磨实现石墨烯与铝粉的均匀混合,然后采用冷压和真空烧结制备了石墨烯增强铝基复合材料。研究了该复合材料的微观结构及力学性能研究。结果表明:所制备的复合材料基体致密,石墨烯结构完整,以片状物形式均匀的分布在基体内,石墨烯与铝基体界面结合良好。当石墨烯含量为0.6%(wt%)时,复合材料抗弯强度最好,达到114 MPa,比纯铝增加了24%;当石墨烯含量为0.4%时,复合材料的硬度最好,达44 HV,比纯铝增加了22%  相似文献   

8.
采用粉末冶金法制备了质量分数为0%(纯铜)、0.4%、0.8%和1.2%的石墨烯增强铜基复合材料,利用光学显微镜、高分辨场扫描电镜、高精度固体密度仪、数字式电导率仪和万能试验机对石墨烯增强铜基复合材料的微观组织和性能进行研究和分析。结果表明,铜粉纯度高、无杂质,随着石墨烯含量的增加,复合材料的孔隙率随之增加,而且石墨烯的团聚现象逐渐加重,晶粒尺寸呈现先降低后提高的现象,而石墨烯含量在0.8%时,晶粒尺寸最小为43.385 nm。以复合材料的物理性能方面来说,石墨烯增强铜基复合材料的密度和电导率呈现下降趋势。随着石墨烯含量的增加,复合材料的屈服强度和最大抗压强度呈现先上升后下降的趋势,而压缩率呈现逐渐下降的趋势,当石墨烯含量为0.8%时,屈服强度和最大抗压强度达到最大值,分别为80.79和332.88 MPa。  相似文献   

9.
铝基复合材料具有重量轻、高耐蚀性、热膨胀系数低、导电导热性能优异和加工性能优良等优点而成为当前轻金属基复合材料研究的主流,其中,石墨烯/Al复合材料是目前研究的热点方向。为了研究石墨烯含量对石墨烯/Al复合材料物理性能的影响,本文采用了冷压烧结法制备了石墨烯质量分数为0%(纯铝)、0.3%、0.6%和0.9%的石墨烯/Al复合材料,采用光学显微镜、扫描电子显微镜及其自带的能谱仪分析石墨烯/Al复合材料的微观形貌及化学成分,采用高精度固体密度仪、显微硬度计、高温DSC分析仪和激光导热系数测量仪测试分析石墨烯/Al复合材料的密度、硬度、比热容、热扩散系数和导热系数,对比分析了不同石墨烯含量对石墨烯/Al复合材料性能的影响机制。结果表明,石墨烯/Al复合材料中石墨烯均匀的分布在铝基体中,石墨烯的添加能够使基体产生明显的晶粒细化,当石墨烯含量超过0.6%时,在复合材料中出现石墨烯的团聚现象。随着石墨烯含量的增加,复合材料的密度和致密度逐渐减小,硬度值呈现先增大后减小的趋势,比热容逐渐降低,热扩散系数先增大后略微减小,导热系数缓慢上升。  相似文献   

10.
《贵金属》2016,(2)
采用粉末冶金法制备了多层石墨烯/银电接触复合材料,并系统研究了多层石墨烯含量对多层石墨烯/银复合材料微观组织、导电率、硬度及电弧侵蚀的影响。结果表明,复合材料密度随多层石墨烯含量的增加而减小。多层石墨烯含量为0.5%的石墨烯/银复合材料具有最佳的导电率,为84.5%IACS。当多层石墨烯含量高于2.0%以后,复合材料硬度降低幅度明显增大。多层石墨烯含量为1.5%的多层石墨烯/银电接触复合材料表现出最优异的抗电弧侵蚀性能。  相似文献   

11.
石墨烯由于其独特的二维结构和优异的物化性能,在改善复合材料的力学性能、电学性能和热学性能等方面具有很大的潜力,已成为金属基复合材料较理想的增强体。铜合金具有优异的导电导热性能和良好的延展性,但是其强度较低、不耐磨及高温下易变形的特点阻碍了其应用和发展。因此,结合石墨烯和铜的性能特点,将石墨烯作为增强体添加到铜中,制备性能优异的石墨烯增强铜基复合材料成为目前研究的热点之一。综述了目前石墨烯增强铜基复合材料的制备方法,并对各方法的特点进行了分析比较,提出未来可采用的制备工艺的方向以及在制备过程中面临的问题和挑战,并对其未来的研究方向进行了展望。  相似文献   

12.
A comparative study on the surface properties of Al−SiC−multi walled carbon nanotubes (CNT) and Al−SiC−graphene nanoplatelets (GNP) hybrid composites fabricated via friction stir processing (FSP) was documented. Microstructural characterization reveals a more homogeneous dispersion of GNPs in the Al matrix as compared to CNTs. Dislocation blockade by SiC and GNP particles along with the defect-free interface between the matrix and reinforcements is also observed. Nanoindentation study reveals a remarkable ∼207% and ∼27% increment in surface nano-hardness of Al−SiC−GNP and Al−SiC−CNT hybrid composite compared to as-received Al6061 alloy, respectively. On the other hand, the microhardness values of Al−SiC−GNP and Al−SiC−CNT are increased by ∼36% and ∼17% relative to as-received Al6061 alloy, respectively. Tribological assessment reveals ∼56% decrease in the specific wear rate of Al−SiC−GNP hybrid composite, whereas it is increased by ∼122% in Al−SiC−CNT composite. The higher strength of Al−SiC−GNP composite is attributed to the mechanical exfoliation of GNPs to few layered graphene (FLG) in the presence of SiC. Also, various mechanisms such as thermal mismatch, grain refinement, and Orowan looping contribute significantly towards the strengthening of composites. Moreover, the formation of tribolayer by the squeezed-out GNP on the surface is responsible for the improved tribological performance of the composites. Raman spectroscopy and various other characterization methods corroborate the results.  相似文献   

13.
采用机械搅拌和烧结工艺制备了GNPs/Al复合材料,实现了无损伤GNPs的完全铺展及在铝基体中均匀弥散分布。研究了GNPs对复合材料粉末冷压-烧结致密化行为的作用机制,阐明了GNPs对复合材料强度和塑性的作用机理,探讨了烧结时间对GNPs/Al复合材料力学性能的影响规律。结果表明,GNPs含量低于0.5%,烧结态GNPs/Al复合材料相对密度达到98%以上。烧结态Al-0.5wt.%GNPs屈服强度达到204MPa,相对于纯铝提高了18.6%。以Al-0.5wt.%GNPs为例,烧结6h后,复合材料硬度为61.5HV,屈服强度为173MPa,压缩应变40%时未发生明显破坏。  相似文献   

14.
In this study,Cu nanoparticles-coated graphene nanoplatelets(Cu-NPs@GNPs) were synthesized by a simple in situ method with the assistance of Na Cl templates and used for reinforcing Al–10 Si composites through stir casting process.The experimental results showed that the coating of Cu-NPs on the GNPs could compromise the density mismatch between GNPs and metal matrix and eff ectively hinder the float of GNPs during stirring.The reaction of Cu-NPs and Al matrix could protect the structural integrity of GNPs as well as improve the interfacial wettability between GNPs and the matrix,thus promoting the uniform dispersion of GNPs in the composites.As a result,the as-prepared 0.5 wt% Cu-NPs@GNPs/Al–10 Si composite exhibited a tensile strength of 251 MPa(45% higher than the Al–10 Si) with a total elongation of 15%.The strengthening eff ects were mainly attributed to the following three reasons:Firstly,the Cu-NPs coating improved the interfacial bonding between GNPs and Al matrix which promoted the load transfer from the matrix to the GNPs.Secondly,the nanoscale Al 2 Cu formed by the reaction of Cu-NPs and Al matrix played a role in precipitation strengthening.Thirdly,GNPs refined the silicon phases and improved the monolithic performances of the composites.  相似文献   

15.
Classical powder metallurgy followed by either hot isostatic pressing(HIPing) or repressing–annealing process was used to produce Cu–graphene nanoplatelets(GNPs) nanocomposites in this work. A wet mixing method was used to disperse the graphene within the matrix. The results show that a uniform dispersion of GNPs at low graphene contents could be achieved, whereas agglomeration of graphene was revealed at higher graphene contents. Density evaluations showed that the relative density of pure copper and copper composites increased by using the post-processing techniques.However, it should be noticed that the efficiency of HIPing was remarkably higher than repressing–annealing process, and through the HIPing, fully dense samples were achieved. The Vickers hardness results showed that the reconsolidation steps can improve the mechanical strength of the specimens up to 50% owing to the progressive porosity elimination after reconsolidation. The thermal conductivity results of pure copper and composites at high temperatures showed that the postprocessing techniques could enhance the conductivity of materials significantly.  相似文献   

16.
Microstructure and mechanical properties of ADC12 composites reinforced with graphene nanoplates (GNPs) prepared by high-intensity ultrasonic assisted casting were investigated. The results indicated that high-intensity ultrasound can promote the uniform distribution of GNPs in the melt, resulting in refining the α(Al) phase and Si phase. The optimal addition of GNPs was 0.9 wt.%, and the optimal ultrasonic time was 12 min. The tensile strength, the yield strength and the hardness of the composite produced under the optimal parameters were 256.8 MPa, 210.6 MPa and HV 126.0, respectively, which increased by 30.5%, 42.7%, and 34.8% compared with those of the matrix, respectively. After adding the GNPs, the fracture mechanism gradually turned from a brittle fracture to a ductile fracture. The good interface and distribution allowed GNPs to play the role in fine grain strengthening, dislocation strengthening and load transfer strengthening effectively.  相似文献   

17.
In order to obtain the superalloy with excellent properties, graphene reinforced K418 nickel base superalloy (GNPs/K418 composite) was prepared by selective laser melting technique in this study. Through systematically comparing and analyzing the microstructure and mechanical property of K418 superalloy and GNPs/K418 composite, it is found that the percentage of small-diameter grain (≤ 15 μm) increased from 84% to 90%, and the max strength of grain orientation (<001>) reduce from 5.76 to 4.17 due to the addition of GNPs. And GNPs can also improve the height and the full width at the half peak of the strong diffraction peak of GNPs/K418 composite. Besides, GNPs/K418 composite is a kind of sandwiched structure, which is consist of GNPs, carbides, and K418 matrix. Therefore, the hardness of the GNPs/K418 composite is 4.1% and 6.9% higher than that of the K418 matrix in the transverse and vertical direction, respectively. The room temperature tensile strength of the GNPs/K418 composite is 9% higher than that of the K418 matrix. And the 600 °C and 900 °C tensile strengths of the GNPs/K418 composite are 7.6% and 10.4% higher than that of the K418 matrix, respectively. It is inferred that the effect of graphene on K418 matrix strengthening is mainly fine grain strengthening and Orowan strengthening. However, the elongation rate of the composite material is reduced, which is attributed to crack sprouting at the interface between the matrix and GNPs under high stress.  相似文献   

18.
Carbon nanotubes (CNTs), nanofibers (CNFs) and graphene are promising components for next-generation high-performance structural and multifunctional composite materials. One of the largest obstacles to creating strong, electrically or thermally conductive CNT/CNF or graphene composites is the difficulty of achieving a good dispersion of the carbon nanomaterials in a matrix. Typically, time-consuming steps of carbon nanomaterial purification, ultrasound treatment and functionalization are required. We utilized a novel approach to fabricate composite materials by growing CNTs/CNFs directly on the surface of matrix, matrix precursor or filler particles. As the precursor matrix and fillers we utilized cement (clinker), copper powder, fly ash particles, calcinated soil and sand. Carbon nanomaterials were successfully grown on these materials without additional catalyst. Investigations of the physical properties of the composite materials based on these carbon-modified particles revealed enhanced mechanical and electrical properties. The improvement in the mechanical properties of the C/Cu-based composite materials is attributed the crystallite or grain formation of the matrix material.  相似文献   

19.
Copper matrix composites were prepared through spark plasma sintering(SPS) process, mixing fixed amount of reduced graphene oxide(rGO) with the different amounts of Cr. In the sintered bulk composites, the layered rGO network and uniform Cr particles distributed in the Cu matrix. Both of mechanical blending and freeze-drying stages of the wet-mixing process obtained the Cu/Cr/rGO mixture powders, and then SPS solid-phase sintering realized the faster densification of these mixture powders. The hardness and compressive yield strength of the Cu–Cr–rGO composites depicted the higher values than those of pure Cu and single rGO-added composite, and they were gradually increased with increasing Cr. The rGO/Cr hybrid second-phases are believed to be beneficial to strengthening Cu matrix. The relevant formation and strengthening mechanisms involved in Cu–Cr–rGO composites were discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号