首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
以酪蛋白为底物测定胰蛋白酶活性,结果发现高浓度的芦丁和苦荞麦浸提液对胰蛋白酶有明显的抑制作用,表明苦荞麦对胰蛋白酶的抑制作用中,芦丁可能起主要作用。对淀粉酶活性的研究还发现,苦荞麦浸提液对α-淀粉酶和β-淀粉酶都有明显的抑制作用,其中对α-淀粉酶起主要抑制作用的物质可能是芦丁,对β-淀粉酶的抑制作用可能是非芦丁物质所致。  相似文献   

5.
The effects of steep regime, nature of alkaline steeping agent, and kilning condition on α‐amylase development were studied for four Nigerian sorghum cultivars. Malt α‐amylase activity was highly significantly (p<.001) influenced by all the four factors as well as their various assortments of interaction. Generally malts from the Local Red (LR) variety produced the highest a‐amylase values, followed by those of SK 5912, Local White and KSV 8 in the above sequence. The presence/absence of air‐rest processes in steep regimes was a significant factor (p<.001) influencing malt α‐amylase response to final warm steeping as well as to the other factors under study. Similarly, the nature of the steeping agent was a very significant determinant of malt α‐amylase response to kilning condition and regime of steeping. Of significant interest was the observation that Ca (OH)2 steeps enhanced malt α‐amylase activity at the higher temperature of kilning. The significantly lower α‐amylase values given under similar conditions by the other alkaline liquors suggest a possible increase in malt thermostability due to steeping in Ca (OH)2. Additionally, the fact that the extent of enhancement of malt α‐amylase activity by Ca (OH)2, at 50°C Kiln temperature, was regime‐dependent, suggests that the latter was an important modulator of sorghum germination physiology.  相似文献   

6.
Large granules from barley starch were packed into a column and hydrolysed with α‐amylase by pumping a diluted enzyme solution through the starch bed. The enzyme was then trapped onto an ion‐exchanger and the dextrins that solubilised from the granules were collected and characterised. The size‐distribution of the solubilished dextrins ranged from degree of polymerisation (DP) 2—500. The linear and branched products originated from both the amylose and the amylopectin components. The rate of solubilisation and the composition of the solubilised dextrins from barley starch were very similar to those found for large wheat starch granules.  相似文献   

7.
8.
BACKGROUND: Diabetes mellitus and associated diseases are an increasing problem around the world. One of the hyperglycemic remedies is glucose absorption reduction by suppressing carbohydrate digestion due to utilization of α‐amylase inhibitors. RESULTS: Prospective herbs were analyzed by in vitro enzyme assay to evaluate their inhibitory activity against porcine pancreatic amylase (PPA), and it was found that Phyllanthus urinaria and three other herbs to showed a potent inhibitory activity. A 50% aqueous methanol‐soluble extract of the leaves of P. urinaria was chromatographed using a silica gel column. The active fractions were further purified by preparative high‐performance liquid chromatography to isolate active principles against PPA. Structural determination revealed that these isolated compounds were gallic acid, corilagin, and macatannin B, and showed mild activity against PPA (activity in 1 mmol L?1 concentration: 23%, 21%, 33%, respectively). CONCLUSION: P. urinaria extracts show inhibitory activity against PPA. This activity, together with the information on isolated compounds, may benefit further exploration of P. urinaria utilization in the management of borderline diabetes patients. Copyright © 2011 Society of Chemical Industry  相似文献   

9.
The leaves of Ligustrum purpurascens are used in a Chinese traditional tea called small‐leaved kudingcha, which is rich in phenylpropanoid glycosides (PPGs) and has many beneficial properties. Two critical exoacting glycoside hydrolase enzymes (glucosidases) involved in carbohydrate digestion are α‐glucosidase and α‐amylase. We investigated the properties of PPGs from L. purpurascens for inhibiting α‐amylase and α‐glucosidase activity in vitro and found IC50 values of 1.02 and 0.73 mg mL?1, respectively. The patterns of inhibiting both α‐amylase and α‐glucosidase were mixed‐inhibition type. Multispectroscopy and molecular docking studies indicated that the interaction between PPGs and α‐amylase and α‐glucosidase altered the conformation of enzymes, with binding at the site close to the active site of enzymes resulting in changed enzyme activity. Our studies may help in the further health use of small‐leaved kudingcha.  相似文献   

10.
11.
12.
In this study, α‐amylase was immobilized on glutaraldehyde activated silanized calcium carbonate nanoparticles by a using covalent binding method. The surface modified nano calcium carbonate (CaCO3) were characterized using FTIR and SEM. Immobilization yield was found as 199.43 mg/g of calcium carbonate nanoparticles. The maximum activity was observed at pH 6.5. The immobilized enzyme had a higher activity at elevated temperature (50–90°C) than the free one. Reuse studies demonstrated that the immobilized enzyme could reuse 25 times while retaining 18.2% of its activity. Free enzyme lost its activity completely within 15 days. Vmax values for the free and immobilized enzymes were calculated as 10 and 0.35 mg/mL/min, respectively.  相似文献   

13.
14.
The aim was to identify the mechanism(s) responsible for the release of bound β‐amylase in soluble forms in vitro and during the germination of barley. Preparations of bound β‐amylase, from barley, were treated with different agents including papain, thiols, starchy endosperm extract and reagents with amphipathic characteristics. The time courses of the release of the bound enzyme were compared using the different releasing agents. All the reagents tested caused some release of bound β‐amylase. Probably a very complex combination of mechanisms is involved in the release of bound β‐amylase as barley germinates. Initial release may be by cleavage of disulphide bonds which bind β‐amylase to insoluble protein. Material having amphipathic characteristics may break hydrophobic associations between β‐amylase and insoluble protein(s). The larger molecular weight isoforms are proteolysed to form the lower molecular weight materials present in malt. Limited proteolysis may also occur before the release of bound enzyme. Whether or not proteolysis is directly responsible for the release of bound enzyme remains uncertain.  相似文献   

15.
Peony seed oil (PSO) is a new resource food rich in α‐Linolenic Acid(ALA) (38.66%). The objective of this study was to assess the modulatory effect of PSO on lipid metabolism. Lard oil, safflower oil (SFO), and PSO were fed to wistar rats with 1% cholesterol in the diet for 60 d. Serum and liver lipids showed significant decrease in total cholesterol (TC), triglyceride (TG), and low density lipoprotein‐cholesterol (LDL‐C) levels in PSO fed rats compared to lard oil and SFO fed rats. ALA, eicosapentaenoic acid (EPA), and docosahexaenoic acid (DHA), contents were significantly increased, whereas linoleic acid (LA), arachidonic acid (AA) levels decreased in serum and liver of PSO fed rats. Feeding PSO increased ALA level and decreased n‐6 to n‐3 polyunsaturated fatty acid (PUFA) ratio. The hypolipidemic result of PSO indicated that PSO participated in the regulation of plasma lipid concentration and cholesterol metabolism in liver. The decreased expression of sterol regulatory element‐binding proteins 1C (SREBP‐1c), acetyl‐CoA carboxylase (ACC), and fatty acid synthase (FAS)‐reduced lipid synthesis; Activation of peroxisome proliferator–activator receptor (PPARα) accompanied by increase of uncoupling protein2 (UP2) and acyl‐CoA oxidase (AOX) stimulated lipid metabolism and exerted an antiobesity effect via increasing energy expenditure for prevention of obesity.  相似文献   

16.
High amylose corn starch (HACS) and potato starch were hydrolyzed by pancreatic α‐amylase in vitro. Residues after hydrolysis were collected and characterized for their physicochemical properties and molecular structure. Compared with raw starches, residues had lower apparent amylose contents and higher resistant starch contents. The gelatinization enthalpy of residues from HACS increased while enthalpy of residues from potato starch decreased from 15.4 to 11.3 J/g. Peak viscosity and breakdown values of the residues from potato starch were markedly decreased but final viscosity values did not show much change. Chain length distribution of debranched amylopectin from the residues indicated that the relative portion of short chain in the residue decreased for both starches. More molecules with intermediate chain length (DP 16—31) were found in residue after 48‐h hydrolysis of potato starch.  相似文献   

17.
18.
The activities of four natural phenolics, kaempferol, galangin, carnosic acid and polydatin in scavenging free radicals, inhibiting advanced glycation end‐product (AGE) formation, α‐amylase and α‐glucosidase and trapping methylglyoxal (MGO), were evaluated in this study. Carnosic acid and galangin had the highest activity in scavenging free radicals. Kaempferol and galangin had the greatest activity in preventing bovine serum albumin (BSA) against glycation and reducing glycated proteins. Polydatin had the greatest performance in trapping MGO to reduce glycation reaction. However, there was no significant difference for kaempferol, galangin and carnosic acid in inhibiting AGE formation by BSA‐MGO reaction. Kaempferol, galangin and carnosic acid were the competitive inhibitors for α‐amylase, while kaempferol and carnosic acid were noncompetitive inhibitors for α‐glucosidase. However, polydatin showed as a mixed noncompetitive inhibitor for both α‐amylase and α‐glucosidase. The results indicated that the four natural phenolics have potential in inhibiting AGE production and the digestive enzymatic activity with different mechanisms.  相似文献   

19.
20.
Ten compounds were isolated and purified from the peels of gold‐red apple (Malus domestica) for the 1st time. The identified compounds are 3β, 20β‐dihydroxyursan‐28‐oic acid (1), 2α‐hydroxyoleanolic acid (2), euscaphic acid (3), 3‐O‐p‐coumaroyl tormentic acid (4), ursolic acid (5), 2α‐hydroxyursolic acid (6), oleanolic acid (7), betulinic acid (8), linolic acid (9), and α‐linolenic acid (10). Their structures were determined by interpreting their nuclear magnetic resonance and mass spectrometry (MS) spectra, and by comparison with literature data. Compound 1 is new, and compound 2 is herein reported for the 1st time for the genus Malus. α‐Glucosidase inhibition assay revealed 6 of the triterpenoid isolates as remarkable α‐glucosidase inhibitors, with betulinic acid showing the strongest inhibition (IC50 = 15.19 μM). Ultra‐performance liquid chromatography‐electrospray ionization MS analysis of the fruit peels, pomace, flesh, and juice revealed that the peels and pomace contained high levels of triterpenes, suggesting that wastes from the fruit juice industry could serve as rich sources of bioactive triterpenes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号