首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Large wood (LW) is a key component of stream habitats, and degraded streams often contain little wood relative to less‐impacted ones. Habitat rehabilitation and erosion control techniques that emphasize addition of natural wood in the form of individual elements or structures are increasingly popular. However, the efficacy of wood addition, especially in physically unstable, warmwater systems is not well established. The effects of habitat rehabilitation of Little Topashaw Creek, a sinuous, sand‐bed stream draining 37 km2 in northwest Mississippi are described herein. The rehabilitation project consisted of placing 72 LW structures along eroding concave banks of a 2‐km reach and planting 4000 willow cuttings in sandbars opposite or adjacent to the LW structures. Response was measured by monitoring flow, channel geometry, physical aquatic habitat and fish populations in treated and untreated reaches for 2 years before and 4 years after rehabilitation. Initially, LW structures reduced high flow velocities at concave bank toes. Progressive failure of the LW structures and renewed erosion began during the second year after rehabilitation, with only 64% of the structures and about 10% of the willow plantings surviving for 3 years. Accordingly, long‐term changes in physical habitat attributable to rehabilitation were limited to an increase in LW density. Fish biomass increased in the treated reach, and species richness approximately doubled in all reaches after rehabilitation, suggesting the occurrence of some sort of stressful event prior to our study. Fish community composition shifted toward one typical of a lightly degraded reference site, but similar shifts occurred in the untreated reaches downstream, which had relatively high levels of naturally occurring LW. Large wood is a key component of sand‐bed stream ecosystems, but LW addition for rehabilitation should be limited to sites with more stable beds and conditions that foster rapid woody plant colonization of sediment deposits. Published in 2006 by John Wiley & Sons, Ltd.  相似文献   

2.
Riparian vegetation development and macroinvertebrate assemblages were studied in 16 streams formed between 35 and 230 years ago, following glacial recession in Glacier Bay National Park, southeast Alaska. Riparian vegetation established most rapidly in streams where flow variation in downstream reaches was buffered by a lake. Riparian vegetation development was positively correlated with lower bank stability, but was independent of stream age. Roots and branches of riparian vegetation trailing into streams (trailing riparian habitat—TRH) were shown to be an important habitat for a number of macroinvertebrate taxa. In young and unstable streams, TRH was colonized mainly by Plecoptera whereas in more stable lake‐influenced streams Simuliidae dominated. Significant coarse woody debris (CWD) accumulations were not observed until after approximately 130 years of stream development had occurred when certain channel features, such as gravel bars, were stabilized by dead wood. Where dead wood was present, opportunistic wood taxa were abundant, even in the younger streams. However, a xylophagous species, Polypedilum fallax, was not recorded until streams were over 100 years old. Two‐way indicator species analysis (TWINSPAN) using presence/absence of macroinvertebrate taxa on TRH, initially divided streams into lake and non‐lake systems, but subsequent divisions were consistent with differences in stream age. TWINSPAN of macroinvertebrate assemblages on dead wood again highlighted differences in stream age. Canonical correspondence analysis indicated that bed stability and stream age were the most important environmental variables influencing macroinvertebrate distribution on TRH. Trailing riparian habitat was most abundant in moderately unstable streams where it facilitates invertebrate colonization. CWD contributes markedly to channel stabilization, provides habitat for invertebrate xylophages, and confers additional habitat complexity. Maximum levels of CWD are predicted to occur in non‐lake streams after approximately 300 years, but at least a further 100 years will be required in stable streams below lakes where dead wood entrainment is not enhanced by flooding, channel migration and bank undercutting. A conceptual model summarizing the role of TRH and CWD on stream development in Glacier Bay is presented. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

3.
It is well known that large woody debris (LWD) plays an important functional role in aquatic organisms' life. However, the influence of LWD on channel morphology and aquatic environments at watershed levels is still unclear. The relationships between wood and surface structure and aquatic habitat in 35 first through fifth order streams of southern interior British Columbia were investigated. Study streams in the channel networks of the study watersheds were classified into four size categories based on stream order and bankfull width: Stream size I: bankfull width was less than 3 m, Stream size II: 3–5 m, Stream size III: 5–7 m, Stream size IV: larger than 7 m. We found the number of functional pieces increased with stream size and wood surface area in stream sizes I, II and III (24, 28 and 25 m2/100 m2, respectively) was significantly higher than that in stream size IV (12 m2/100 m2). The contribution of wood pieces to pool formation was 75% and 85% in stream sizes II and III, respectively, which was significantly higher than those in stream size I (50%) and size IV (25%). Between 21% and 25% of wood pieces were associated with storing sediment, and between 20% and 29% of pieces were involved in channel bank stability in all study streams. Due to long‐term interactions, LWD in the intermediate sized streams (Size II and III) exhibited much effect on channel surface structure and aquatic habitats in the studied watersheds. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

4.
We investigated interactions of riparian vegetative conditions upon a suite of channel morphological variables: active channel width, variability of width within a reach, large wood frequency, mesoscale habitat distributions, mesoscale habitat diversity, median particle size and per cent fines. We surveyed 49 wadeable streams, 45 with low levels of development, throughout the Upper Little Tennessee River Basin in the Southern Appalachians. Conversion of riparian forest to grass has reduced aquatic habitat area (quantified by active channel width), channel width variability, wood frequency, mesoscale habitat diversity and obstruction habitat (wood and rock jams), and such conversion has increased the fraction of run and glide habitat. Channels with grassy riparian zones were only one‐third to three‐fifths of the width of channels with forested riparian zones, and channels with grassy or narrow forested riparian zones were nearly devoid of wood. Particle size metrics were strongly affected by stream power and agricultural cover in the basin, but the data suggest that elimination of riparian forest reduces median bed particle size. Results indicate that even modest increases in the extent and width of forested riparian buffers would improve stream habitat conditions. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

5.
Mechanically reshaping stream banks is a common practice to mitigate bank erosion in streams that have been extensively channelised and lowered for land drainage. A common perception regarding this activity is that fish populations will be largely unaffected, at least in the short term, because the low‐flow wetted channel remains undisturbed. However, the response of fish populations to this practice has rarely been quantitatively evaluated. Using a Before‐After‐Control‐Impact design, we assessed fish community responses to a catchment‐scale bank reshaping event in a fourth‐order low‐gradient stream that drains an intensive agricultural landscape. Quantitative electric fishing and fish habitat data were collected 2 months before and annually for 3 years after the reshaping event. After reshaping, deposited fine sediment levels increased in impact reaches, and there was a significant reduction in anguillid eel biomass (by 49%). In contrast, densities of obligate benthic gobiid bully species increased significantly in impact reaches—potentially due to reduced predation pressure from eels. Three years after bank reshaping, fish community structure had largely returned to its preimpact state in the reshaped areas. Our results suggest that, even in highly modified stream channels, further bank modification can reduce instream habitat quality and displace eels for at least 1 year. Managers should endeavour to use bank erosion control measures that conserve bank‐edge cover, especially in streams with populations of anguillid eels, because these fish are declining globally.  相似文献   

6.
It has long been known that large wood in rivers increases channel complexity and is a primary driver of geomorphic change in forested mountain streams in the Pacific Northwest. Studies analyzing the presence and distribution of fluvial wood are often limited in their spatial extents to the site or reach scales because of the intensive fieldwork required for comprehensive wood surveys. Remote sensing techniques are beginning to allow researchers to assess fluvial wood dynamics and distributions on a basin or regional scale. We used 2009 high‐resolution light detection and ranging (LiDAR) point cloud data to detect and quantify wood within five forested watersheds in the Oregon Coast Range. We filtered the LiDAR data to remove the forest canopy over the stream channel and visually inventoried fluvial wood based on its distinct shape within the channels. We derived several wood and stream morphometric variables to test theories relating to wood abundance and positioning in the lower reaches of streams. We were able to detect fluvial wood with confidence; however, validation of results with ground‐truth data was difficult in the study due to the dynamic and mobile nature of wood through time. We mapped a total of 163 single logs and 55 logjams within the five study watersheds. We did not find statistically significant differences between individual pieces and jam positioning in relation to slope; however, the surveyed wood was often found in areas of lower stream power. This research shows that it is possible to use height‐filtered LiDAR to detect in‐stream wood in densely forested watersheds and has the potential to be employed in future wood studies across broad spatial scales. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

7.
Stream restoration focusing on adaptable natural and inert material use has been implemented through soil bioengineering designs aimed at the stabilization of urbanized streams. Within each design application materials such as large wood, sediment fill and vegetation must be suited to diverse settings. This paper discusses the application of cribwalls as soil bioengineering designs found in two Southern Ontario watersheds and the criteria that influence their performance. Field measurements of cribwall cuttings, sediment sampling, erosion pin monitoring, and computer‐generated stream power analysis are used to compare design performance at several sites. It is determined that the technical specifications of the design and site characteristics such as stream power distribution, sediment, and channel planform are equally involved in long‐term streambank stability. The results indicate that cribwalls with dense cutting growth perform well on streambanks that offer a greater amount of soil cohesion, nutrients, and infiltration in the mid and upper sections of the bank. In streams with moderate channel slopes and stream power distribution that is above the watershed mean, streams with well‐developed floodplains, sinuous channel planforms, and low bank height ratios perform better than those that are confined, straightened, and have greater bank height ratios. Throughout the comparison of several cribwall sites, the implication of this work is to demonstrate how to assess the fitness of similar soil bioengineering designs for application to diverse stream settings and to further validate their significance in stream restoration as designs that are multifunctional. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

8.
Effects of stream enhancement on habitat conditions in five spring‐fed urban streams in Christchurch, New Zealand, were investigated. Stream enhancement consisted of riparian planting at three sites, and riparian planting and channel modifications at two sites, where a concrete dish channel and a timber‐lined channel were removed, and natural banks reinstated. Sites were surveyed prior to enhancement activities and 5 years after, and changes in riparian conditions (composition, horizontal and vertical cover), instream conditions (bank modifications, inorganic and organic material on the streambed), and hydraulic conditions (wetted perimeter, cross‐sectional area, depths and velocities) quantified. Enhanced sites generally had higher marginal vegetation cover, as well as increased overhanging riparian vegetation, reflecting planting of Carex sedges close to the water. Bed sediments changed at some sites, with the greatest change being replacement of a concrete channel with gravel and cobble substrate. Bryophyte cover declined at this site, reflecting loss of stable habitat where these plants grew. Bed sediments changed less at other sites, and cover of fine sediments increased in some enhanced sites, presumably from sediment runoff from nearby residential development. Filamentous algal cover decreased at one stream where shade increased, but increased in another stream where the removal of timber‐lined banks and creation of a large pond decreased shade. Stream enhancement increased variability in velocity at three of the five sites, but overall changes to stream hydraulics were small. Although enhancement activities altered the physical conditions of the streams, major changes occurred only to riparian vegetation and bank conditions. Lack of other major changes to instream physical conditions most likely reflected the limited range of channel morphology alterations undertaken. Moreover, the flat topography of Christchurch and naturally low stream discharge further constrained changes to instream physical conditions from enhancement activities. Sediment inputs from continuing urban development also negated the effects of adding coarse substrates. These over‐arching factors may constrain the success of future stream enhancement projects within Christchurch. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

9.
Large wood, both live and dead, is essential for producing complex habitat in many streams, especially in forested watersheds that support salmonid populations. The addition of engineered wood structures is a common approach taken in many streams where past watershed management practices have resulted in reduced wood loading. We examined six 300‐m stream reaches in the Lagunitas Creek watershed, Northern California, to determine (i) the distribution of large wood in the bankfull channel and 10‐year floodplain, (ii) the influence of large wood on the size and distribution of pools and (iii) whether streams with engineered wood structures had greater diversity of pool habitat to support salmonid populations. We found that the amount of large wood in the bankfull channel and the amount available for recruitment from the 10‐year floodplain were highly variable among and within reaches examined and largely dependent on the local geomorphic setting. Stream reaches with engineered wood structures had elevated pool frequencies relative to reaches without these structures, suggesting a higher capacity to support salmonids during critical life stages. Among large wood pieces that had a strong influence on pool formation, 23% had an attached root wad and 66% were part of a cluster. All of the study reaches we examined had lower volumes of large wood in their bankfull channels than similar stream types with natural wood‐loading levels, suggesting that increased additions of large wood could provide ecosystem benefits over time. These principles can be understood and transferred effectively to other watersheds using a framework of wood‐loading process domains. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

10.
Fishery biologists are increasingly recognizing the importance of considering the dynamic nature of streams when developing streamflow policies. Such approaches require information on how flow regimes influence the physical environment and how those factors, in turn, affect species‐specific demographic rates. A more cost‐effective alternative could be the use of dynamic occupancy models to predict how species are likely to respond to changes in flow. To appraise the efficacy of this approach, we evaluated relative support for hypothesized effects of seasonal streamflow components, stream channel characteristics, and fish species traits on local extinction, colonization, and recruitment (meta‐demographic rates) of stream fishes. We used 4 years of seasonal fish collection data from 23 streams to fit multistate, multiseason occupancy models for 42 fish species in the lower Flint River Basin, Georgia. Modelling results suggested that meta‐demographic rates were influenced by streamflows, particularly short‐term (10‐day) flows. Flow effects on meta‐demographic rates also varied with stream size, channel morphology, and fish species traits. Small‐bodied species with generalized life‐history characteristics were more resilient to flow variability than large‐bodied species with specialized life‐history characteristics. Using this approach, we simplified the modelling framework, thereby facilitating the development of dynamic, spatially explicit evaluations of the ecological consequences of water resource development activities over broad geographic areas. Published 2014. This article is a U.S. Government work and is in the public domain in the USA.  相似文献   

11.
Channel‐spanning logjams completely span the active channel and create longitudinal discontinuities of the water surface and stream bed across at least two‐thirds of the channel width. These jams disproportionately affect channel process and form relative to smaller jams that do not span the entire channel width. We analyze a spatially extensive dataset of 859 channel‐spanning jams distributed along 124 km of 16 distinct rivers on the eastern side of Rocky Mountain National Park, Colorado, USA, with drainage areas spanning 2.6 to 258 km2 and diverse valley geometry and forest stand age. We categorized valley geometry in terms of lateral confinement (confined, partly confined, or unconfined), which correlates with gradient. Jams exhibit substantial downstream variability in spacing at channel lengths of 102–103 m. The number of jams within a reach is explained by a statistical model that includes drainage area, valley type (lateral confinement), and channel width. Longitudinal spacing of jams drops substantially at drainage areas greater than ~20 km2, although jam spacing exhibits tremendous variability at smaller drainage areas. We interpret the lack of jams at larger drainage areas to reflect increasing transport capacity for instream wood. We interpret the variability in jam spacing at small drainage areas to reflect local controls of valley geometry and associated wood recruitment and fluvial transport capacity. Our results suggest that management of instream wood designed to facilitate the formation of channel‐spanning jams can be most effectively focused on smaller drainage areas where these jams are most abundant in the absence of management that alters instream wood recruitment or retention. Unmanaged streams in the study region with drainage area <60 km2 have ~1.1 channel‐spanning jams per 100 m length of stream. The cumulative effects of these jams on instream storage of sediment and organic matter, hyporheic exchange, instream habitat, stream metabolism, and channel–floodplain connectivity are likely to be enormous. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

12.
Placement of wood in streams has become a common method to increase ecological value in river and stream restoration and is widely used in natural environments. Water managers, however, are often hesitant to introduce wood in channels that drain agricultural and urban areas because of backwater effect concerns. This study aims to better understand the dependence of wood‐induced backwater effects on cross‐sectional area reduction and on discharge variation. A newly developed, one‐dimensional stationary model demonstrates how a reduction in water level over the wood patch significantly increases directly after wood insertion. The water level drop is found to increase with discharge, up to a maximum level. If the discharge increases beyond this maximum, the water level drop reduces to a value that may represent the situation without wood. This reduction predominately depends on the obstruction ratio, calculated as the area covered by wood in the channel cross section divided by the total cross‐sectional area. The model was calibrated with data from a field study in four lowland streams in the Netherlands. The field study showed that morphologic adjustments in the stream and reorientation of the woody material reduced the water level reduction over the patches in time. The backwater effects can thus be reduced by optimizing the location where wood patches are placed and by manipulating the obstruction ratio. The model can function as a generic tool to achieve a stream design with wood that optimizes the hydrological and ecological potential of streams.  相似文献   

13.
Dam removal to restore ecologically impaired rivers is becoming increasingly common. Although the target often is to facilitate fish migration, dam removal has also been assumed to benefit other types of organisms. Because few studies thus far deal with effects of dam removal on stream macroinvertebrates and because results have been equivocal, we investigated both short‐ and longer‐term dam‐removal effects on downstream macroinvertebrate communities. We did this in a before‐and‐after study of the removal of a dam located in a south Swedish stream. We sampled the benthic fauna 6 months before dam removal and both 6 months and 3.5 years after the dam was removed. We compared species composition, taxonomic richness, total densities and densities of macroinvertebrate groups before and after dam removal and between downstream and reference sites. We found that dam removal reduced some macroinvertebrate taxa at the downstream site, but we found no effect on community composition. Although this corroborates results from previous short‐term studies, we also found a reduction of taxonomic richness and that some dam‐removal effects persisted or even increased over time. The most likely explanation for the suppression of benthic macroinvertebrate richness following dam removal is a significantly increased sediment transport from the former reservoir and a subsequent loss of preferred substrates. Our results indicate that adverse dam‐removal effects may be long lasting but taxon specific. We therefore call for longer‐term studies on a variety of organisms to better understand how dam removal may influence downstream macroinvertebrate communities. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

14.
Many drainage ditches in the Midwest have developed a geomorphological configuration characterized by vegetated bars, or benches, on the bottom of the ditch and a stream flowing within a channel inset into these bars or benches. Past work has focused on the sedimentology of the benches and the depositional processes involved in bench development. This study investigates the three‐dimensional flow structure and short‐term channel change in a small grass‐lined stream flanked by benches at the bottom of an agricultural drainage ditch in east central Illinois, USA. In particular, it focuses on the influence of channel curvature and bank vegetation on flow through the inset channel at two different stages and explores how the structure of the flow is related to documented patterns of channel change. Results indicate that the mean flow is characterized by a submerged high‐velocity core that mainly is confined to the centre of the channel by near‐bank zones of flow stagnation/separation induced by abrupt changes in channel alignment and by strong frictional effects of grasses extending into the flow along the channel margins. Where the high‐velocity core is close to the channel margins, minor erosional adjustments of the inset channel can occur in the form of bank erosion. Patterns of turbulence kinetic energy reflect the development of shear layers near the channel margins and surrounding the submerged high‐velocity core. Locations with strong turbulence also correspond to locations of minor bank erosion. The results indicate that the inset channel is a relatively stable feature, especially where the alignment of this channel is straight, but that erosion‐control treatments may be necessary locally where the inset channel impinges on the ditch bank. Although the development of benches, a geomorphic response to ditch maintenance, is commonly viewed as a threat to drainage efficacy, preserving or constructing benches and associated inset channels in drainage ditches can enhance aquatic habitat and water quality. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

15.
Large woody debris (LWD) is an important ecological element in rivers and streams. Despite its importance, LWD is often removed from urban stream channels for flood control or road maintenance purposes, an approach with high economic and ecological costs and one that is largely unsuccessful. We propose an approach to conserve LWD in channels by modifying infrastructure (culverts and bridges) to allow LWD passage, maintaining aquatic habitat and reducing flooding and road maintenance costs. In Soquel Creek (California, USA), which has a history of LWD‐related flooding, we compared long‐term LWD management costs of historical, current and a LWD‐passing approach whereby infrastructure is enlarged to accommodate LWD passage downstream. We estimated costs of infrastructure replacement, programmatic flood control (LWD removal), LWD‐related flood damage and lost aquatic habitat. The amount of lost aquatic habitat was determined by comparing LWD loading (pieces m?1) in Soquel Creek (0.007 pieces m?1) to nearby unmanaged streams (0.054 to 0.106 pieces m?1). Estimated costs of infrastructure able to pass LWD were nearly double that of historical costs but comparable to current costs. The LWD‐passing approach was comparable to removal approaches in the short term (1 to 50 years) but much less in the long term (51 to 100 years), as expenditures in infrastructure replacement to accommodate LWD yielded reductions in flooding costs and habitat loss. Given the urgency to maintain and restore aquatic habitat, the proposed approach may be broadly applicable. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

16.
In southeastern Coastal Plain streams, wood debris can be very abundant and is recruited from extensive forested floodplains. Despite importance of wood debris, there have been few opportunities to examine recruitment and redistribution of wood in an undisturbed setting, particularly in the southeastern Coastal Plain. Following extensive flooding in 1994, measurements of individual downed trees (species, dbh, orientation, distance from base‐flow channel and condition) were made across replicated riparian landforms in a Gulf Coastal Plain 5th‐order stream. Annually, the fate of these trees was determined and newly recruited trees were noted. More than 300 downed trees have been recorded. Recruitment varied across landforms with more constrained reaches having greatest mortality. Total tree mortality varied substantially across years. Generally, tree recruitment was greatest in years with substantial floods (1994 and 1998). For each riparian landform type, tree mortality was correlated with the maximum daily flow during the period preceding annual debris surveys. This relationship was particularly strong for sand ridges (r2 = 0.942) and low terraces (r2 = 0.915), but was significant for floodplains (r2 = 0.413). Greatest rates of debris recruitment per maximum daily flow were observed for sand ridges followed by low terraces. Flood characteristics also influenced debris recruitment. The 1994 flood was caused by a tropical storm and resulted in a rapid rise in streamflow. Much of the debris recruited during this flood was from toppled trees and was oriented parallel to the stream channel. In contrast, the 1998 flood was preceded by a wetter than average winter with more gradually rising flows and there was no relationship between riparian landform and debris characteristics. These results indicate that wood recruitment dynamics in Coastal Plain streams are complex. Wood recruitment rates are controlled by cyclical variations in climate interacting with riparian geomorphology. Infrequent high flows appear critical in the maintenance of the instream debris pool. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

17.
The natural flow regime and the relationship between flows and riparian vegetation are described for sites on both the Blackwood River in south‐western Australia and the Ord River in north‐western Australia. Analysis of long‐term flow data showed the historic mean monthly river discharge for the Blackwood River is strongly seasonal and highly predictable with generally low variability each month. The Ord River showed a strong seasonality of flows with about 92% of the (total) yearly flow occurring between December and March. Flow variability was very high (e.g. coefficient of variation >100% for all months) but highly predictable, with this mostly attributed to low but constant dry‐season flows. Water depth, duration of flood events and the number of flood events per year show a significant correlation with aspects of the riparian vegetation within experimental vegetation plots. Results highlight the strong relationship between floristics, life form structure and population dynamics with stream hydrology. On the Blackwood River, species richness and cover of shrubs reduced with increased duration and frequency of flooding, while cover of exotic species and annual herbs increased with increased flooding. Germination of tree seedlings was not influenced by flood regime but size class of tree species increased with flooding frequency. On the Ord River, species richness was not influenced by flooding regime. However, cover of perennial grasses increased with flooding frequency whilst cover of shrubs decreased. There was no relationship between flooding and seedling establishment whilst tree size class decreased with increased flooding. The methods described here can be used to compare the response of different components of the riparian vegetation to different fluvial regimes (e.g. because of impoundment and abstraction). This technique can be expanded for the management of riparian zones and planning rehabilitation programmes. It may also be useful for improving the ecological knowledge base for setting environmental flows in regulated systems. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

18.
Up to now, most lowland stream restoration projects were unsuccessful in terms of ecological recovery. Aiming to improve the success of stream restoration projects, a novel approach to restore sandy‐bottom lowland streams degraded by channel incision was launched, consisting of the addition of sand to the stream channel in combination with the introduction of coarse woody debris. Yet it remained unknown whether this novel measure of sand addition is actually effective in terms of biodiversity improvements. The aim of the present study was therefore to evaluate if sand addition can improve hydromorphological stream complexity on the short term leading to an increase in macroinvertebrate biodiversity. To this end, particle transport, water depth, current velocity, dissolved oxygen dynamics, and sediment composition were measured. The response of the macroinvertebrate community composition was determined at different stages during the disturbance and short‐term recovery process. Immediately downstream the sand addition site, transport and sedimentation of the sand were initially intense, until an equilibrium was reached and the physical conditions stabilized. The stream section matured fast as habitat formation took place within a short term. Macroinvertebrate diversity decreased initially but recovered rapidly following stabilization. Moreover, an increase in rheophilic taxa was observed in the newly formed habitats. Thus, although sand addition initially disturbed the stream, a relatively fast physical and biological recovery occurred, leading to improved instream conditions for a diverse macroinvertebrate community, including rheophilic taxa. Therefore, we concluded that sand addition is a promising restoration measure for incised lowland streams.  相似文献   

19.
River bank erosion is a point of concern along navigable waterways because it increases the likelihood of bank failure. In non‐tidal and restricted fetch waterways, bank failure is mainly the result of extreme weather events and ship wave action. To counteract progressive bank erosion, nature‐friendly bank protection (a ‘living’ shoreline) has been installed in a stretch of the Lys (Belgium). It consists of off‐bank timber piling, which separates the fairway from the shallow water riverine environment, and a reed belt, planted at the base of the vertical cut bank. To evaluate its effectiveness, short‐term and long‐term field studies were carried out. The long‐term topographic survey did not reveal a clear difference in bank erosion rates between the surveyed nature‐friendly protected and naturally eroding embayments. Horizontal bank retreat could however not be linked directly to occasional flooding events and frequent ship wave action, although the latter's influence was inferred qualitatively. Based on velocity and turbidity measurements, the short‐term study pointed out the importance of an individual ship's wave action on bed and bank erosion behind the off‐bank timber piling. All ships were able to resuspend sandy bed sediments; yet, only a significant higher sediment volume was transported because of shipping traffic of the European Conference of Ministers of Transport (ECMT) classes IV and Va. If ship wave energy exceeded 45 Jm?2, silty bank particles were dislodged from the river bank. Although validation of the results by longer term assessments may complete the physical insight in river bank erosion, the study indicated that this particular bank protecting configuration does not provide sufficient protection against ship wave action and does not adequately prevent further bank erosion. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

20.
Instream wood promotes habitat heterogeneity through its influence on flow hydraulics and channel geomorphology. Within the Columbia River Basin, USA, wood is vital for the creation and maintenance of habitat for threatened salmonids. However, our understanding of the relative roles of the climatic, geomorphic, and ecological processes that source wood to streams is limited, making it difficult to identify baseline predictions of instream wood and create targets for stream restoration. Here, we investigate how instream wood frequency and volume differ between seven sub‐basins of the interior Columbia River Basin and what processes shape these differences within these sub‐basins. We collected data on wood volume and frequency, discharge and stream power, and riparian and watershed forest structure for use in modelling wood volume and frequency. Using random forest models, we found that mean annual precipitation, riparian tree cover, and the individual watershed were the most important predictors of wood volume and frequency. Within sub‐basins, we used linear models, finding that some basins had unique predictors of wood. Discharge, watershed area, or precipitation often combined with forest cover, riparian conifer, and/or large tree cover in models of instream large wood volume and frequency. In many sub‐basins, models showed at least one hydrologic variable, indicative of transport competence and one ecological variable, indicative of the reach or upstream watershed's capability to grow measurable instream wood. We conclude that basin‐specific models yield important insights into the hydrologic and ecological processes that influence wood loads, creating tractable hypotheses for building predictive models of instream wood. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号