共查询到20条相似文献,搜索用时 0 毫秒
1.
Heitham Wady Hari K. K. Subramanian 《Small (Weinheim an der Bergstrasse, Germany)》2016,12(20):2689-2700
The nanoscale features of DNA have made it a useful molecule for bottom‐up construction of nanomaterials, for example, two‐ and three‐dimensional lattices, nanomachines, and nanodevices. One of the emerging applications of such DNA‐based nanostructures is in chemical and biological sensing, where they have proven to be cost‐effective, sensitive and have shown promise as point‐of‐care diagnostic tools. DNA is an ideal molecule for sensing not only because of its specificity but also because it is robust and can function under a broad range of biologically relevant temperatures and conditions. DNA nanostructure‐based sensors provide biocompatibility and highly specific detection based on the molecular recognition properties of DNA. They can be used for the detection of single nucleotide polymorphism and to sense pH both in solution and in cells. They have also been used to detect clinically relevant tumor biomarkers. In this review, recent advances in DNA‐based biosensors for pH, nucleic acids, tumor biomarkers and cancer cell detection are introduced. Some challenges that lie ahead for such biosensors to effectively compete with established technologies are also discussed. 相似文献
2.
3.
Fei Wang Xueli Zhang Xiaoguo Liu Chunhai Fan Qian Li 《Small (Weinheim an der Bergstrasse, Germany)》2019,15(26)
DNA nanotechnology enables the precise fabrication of DNA‐based machines with nanoscale dimensions. A wide range of DNA nanomachines are designed, which can be activated by specific inputs to perform various movement and functions. The excellent rigidity and unprecedented addressability of DNA origami have made it an excellent platform for manipulating and investigating the motion behaviors of DNA machines at single‐molecule level. In this Concept, power supply, machine actuation, and motion behavior of DNA machines on origami platforms are summarized and classified. The strategies utilized for programming motion behavior of DNA machines on DNA origami are also discussed with representative examples. The challenges and outlook for future development of manipulating DNA nanomachines at the single molecule level are presented and discussed. 相似文献
4.
Oleksii Nevskyi Dmytro Sysoiev Jes Dreier Simon Christoph Stein Alex Oppermann Florian Lemken Tobias Janke Jörg Enderlein Ilaria Testa Thomas Huhn Dominik Wöll 《Small (Weinheim an der Bergstrasse, Germany)》2018,14(10)
Super‐resolution fluorescence microscopy allows for unprecedented in situ visualization of biological structures, but its application to materials science has so far been comparatively limited. One of the main reasons is the lack of powerful dyes that allow for labeling and photoswitching in materials science systems. In this study it is shown that appropriate substitution of diarylethenes bearing a fluorescent closed and dark open form paves the way for imaging nanostructured materials with three of the most popular super‐resolution fluorescence microscopy methods that are based on different concepts to achieve imaging beyond the diffraction limit of light. The key to obtain optimal resolution lies in a proper control over the photochemistry of the photoswitches and its adaption to the system to be imaged. It is hoped that the present work will provide researchers with a guide to choose the best photoswitch derivative for super‐resolution microscopy in materials science, just like the correct choice of a Swiss Army Knife's tool is essential to fulfill a given task. 相似文献
5.
Zhenghan Di Jian Zhao Hongqian Chu Wenting Xue Yuliang Zhao Lele Li 《Advanced materials (Deerfield Beach, Fla.)》2019,31(33)
Extracellular ATP is an emerging target for cancer treatment because it is a key messenger for shaping the tumor microenvironment (TME) and regulating tumor progression. However, it remains a great challenge to design biochemical probes for targeted imaging of extracellular ATP in the TME. A TME‐driven DNA nanomachine (Apt‐LIP) that permits spatially controlled imaging of ATP in the extracellular milieu of tumors with ultrahigh signal‐to‐background ratio is reported. It operates in response to the mild acidity in the TME with the pH (low) insertion peptide (pHLIP) module, thus allowing the specific anchoring of the structure‐switching signaling aptamer unit to the membrane of tumor cells for “off–on” fluorescence imaging of the extracellular ATP. Apt‐LIP allows for acidity driven visualization of different extracellular concentrations of exogenous ATP, as well as the monitoring of endogenous ATP release from cells. Furthermore, it is demonstrated that Apt‐LIP represents a promising platform for the specific imaging of the extracellular ATP in both primary and metastatic tumors. Ultimately, since diverse aptamers are obtained through in vitro selection, this design strategy can be further applied for precise detection of various extracellular targets in the TME. 相似文献
6.
Bo Kou Xin Guo Shou‐Jun Xiao Xingguo Liang 《Small (Weinheim an der Bergstrasse, Germany)》2013,9(23):3939-3943
7.
Harish Chandran Nikhil Gopalkrishnan Bernard Yurke John Reif 《Journal of the Royal Society Interface》2012,9(72):1637-1653
Can a wide range of complex biochemical behaviour arise from repeated applications of a highly reduced class of interactions? In particular, can the range of DNA manipulations achieved by protein enzymes be simulated via simple DNA hybridization chemistry? In this work, we develop a biochemical system which we call meta-DNA (abbreviated as mDNA), based on strands of DNA as the only component molecules. Various enzymatic manipulations of these mDNA molecules are simulated via toehold-mediated DNA strand displacement reactions. We provide a formal model to describe the required properties and operations of our mDNA, and show that our proposed DNA nanostructures and hybridization reactions provide these properties and functionality. Our meta-nucleotides are designed to form flexible linear assemblies (single-stranded mDNA (ssmDNA)) analogous to single-stranded DNA. We describe various isothermal hybridization reactions that manipulate our mDNA in powerful ways analogous to DNA–DNA reactions and the action of various enzymes on DNA. These operations on mDNA include (i) hybridization of ssmDNA into a double-stranded mDNA (dsmDNA) and heat denaturation of a dsmDNA into its component ssmDNA, (ii) strand displacement of one ssmDNA by another, (iii) restriction cuts on the backbones of ssmDNA and dsmDNA, (iv) polymerization reactions that extend ssmDNA on a template to form a complete dsmDNA, (v) synthesis of mDNA sequences via mDNA polymerase chain reaction, (vi) isothermal denaturation of a dsmDNA into its component ssmDNA, and (vii) an isothermal replicator reaction that exponentially amplifies ssmDNA strands and may be modified to allow for mutations. 相似文献
8.
There has been a constant and urgent need to upgrade the current diagnostic technologies to the next generation by utilizing innovative advanced technologies in order to meet new challenges. Micro/nano technology, a series of methods for design and manipulation materials at the micrometer and nanometer scales, which perfectly covers the key building blocks of life including cells, organelles, proteins, nucleic acids, and other components, has unique advantages over current diagnostic methods. For the applications of micro–nano technology in next‐generation diagnostics, three categories, including microchip‐based devices, DNA nanomachines, and DNA nanomaterials, are extensively reviewed. Specifically, for the microchip‐based devices, terahertz technology and surface acoustic wave technology show their ultrasensitivity of label‐free, amplification‐free diagnosis. For the DNA nanomachines, DNA tweezers, DNA robots, and DNA walkers exhibit a great potential for diagnosis with the arbitrary structures and controllable motion behaviors. For the DNA nanomaterials, DNA aptamers, DNAzymes, and hybrid DNA nanomaterials provide sensitive biorecognition elements and versatile signal transductions, which are demonstrated as promising material candidates for the next‐generation diagnostics. Through this review, it is envisioned that micro/nano technologies will play an important role in the next‐generation diagnostics. 相似文献
9.
Jingwen Wang Junjie Yuan Jiajia Liu Haixia Zou Lin Yang Hong Chen Xiangmeng Qu 《Small (Weinheim an der Bergstrasse, Germany)》2023,19(28):2207622
DNA self-assembly provides a “bottom-up” route to fabricating complex shapes on the nanometer scale. However, each structure needs to be designed separately and carried out by professionally trained technicians, which seriously restricts its development and application. Herein, a point-and-shoot strategy based on enzyme-assisted DNA “paper-cutting” to construct planar DNA nanostructures using the same DNA origami as the template is reported. Precisely modeling the shapes with high precision in the strategy based on each staple strand of the desired shape structure hybridizes with its nearest neighbor fragments from the long scaffold strand. As a result, some planar DNA nanostructures by one-pot annealing the long scaffold strand and selected staple strands is constructed. The point-and-shoot strategy of avoiding DNA origami staple strands’ re-designing based on different shapes breaks through the shape complexity limitation of the planar DNA nanostructures and enhances the simplicity of design and operation. Overall, the strategy's simple operability and great generality enable it to act as a candidate tool for manufacturing DNA nanostructures. 相似文献
10.
Clemens Richert Martin Meng Arunoday Singh 《Small (Weinheim an der Bergstrasse, Germany)》2009,5(24):2782-2783
11.
Pengfei Wang Cheng Tian Xiang Li Chengde Mao 《Small (Weinheim an der Bergstrasse, Germany)》2014,10(19):3923-3926
12.
Ian T. Hoffecker Sijie Chen Andreas Gdin Alessandro Bosco Ana I. Teixeira Bjrn Hgberg 《Small (Weinheim an der Bergstrasse, Germany)》2019,15(1)
Self‐assembled DNA origami nanostructures have a high degree of programmable spatial control that enables nanoscale molecular manipulations. A surface‐tethered, flexible DNA nanomesh is reported herein which spontaneously undergoes sharp, dynamic conformational transitions under physiological conditions. The transitions occur between two major macrostates: a spread state dominated by the interaction between the DNA nanomesh and the BSA/streptavidin surface and a surface‐avoiding contracted state. Due to a slow rate of stochastic transition events on the order of tens of minutes, the dynamic conformations of individual structures can be detected in situ with DNA PAINT microscopy. Time series localization data with automated imaging processing to track the dynamically changing radial distribution of structural markers are combined. Conformational distributions of tethered structures in buffers with elevated pH exhibit a calcium‐dependent domination of the spread state. This is likely due to electrostatic interactions between the structures and immobilized surface proteins (BSA and streptavidin). An interaction is observed in solution under similar buffer conditions with dynamic light scattering. Exchanging between solutions that promote one or the other state leads to in situ sample‐wide transitions between the states. The technique herein can be a useful tool for dynamic control and observation of nanoscale interactions and spatial relationships. 相似文献
13.
14.
Arlin Rodriguez Dhanush Gandavadi Johnsi Mathivanan Tingjie Song Bharath Raj Madhanagopal Hannah Talbot Jia Sheng Xing Wang Arun Richard Chandrasekaran 《Small (Weinheim an der Bergstrasse, Germany)》2023,19(39):2300040
The programmable nature of DNA allows the construction of custom-designed static and dynamic nanostructures, and assembly conditions typically require high concentrations of magnesium ions that restricts their applications. In other solution conditions tested for DNA nanostructure assembly, only a limited set of divalent and monovalent ions are used so far (typically Mg2+ and Na+). Here, we investigate the assembly of DNA nanostructures in a wide variety of ions using nanostructures of different sizes: a double-crossover motif (76 bp), a three-point-star motif (~134 bp), a DNA tetrahedron (534 bp) and a DNA origami triangle (7221 bp). We show successful assembly of a majority of these structures in Ca2+, Ba2+, Na+, K+ and Li+ and provide quantified assembly yields using gel electrophoresis and visual confirmation of a DNA origami triangle using atomic force microscopy. We further show that structures assembled in monovalent ions (Na+, K+ and Li+) exhibit up to a 10-fold higher nuclease resistance compared to those assembled in divalent ions (Mg2+, Ca2+ and Ba2+). Our work presents new assembly conditions for a wide range of DNA nanostructures with enhanced biostability. 相似文献
15.
Jie Zeng Wenhao Fu Zhenping Qi Qiushuang Zhu Huawei He Chengzhi Huang Hua Zuo Chengde Mao 《Small (Weinheim an der Bergstrasse, Germany)》2019,15(26)
DNA is a superb molecule for self‐assembly of nanostructures. Often many DNA strands are required for the assembly of one DNA nanostructure. For lowering the cost of synthesizing DNA strands and facilitating the assembly process, it is highly desirable to use a minimal number of unique strands for potential technological applications. Herein, a strategy is reported to assemble a series of DNA microparticles (DNAµPs) from one component DNA strand. As a demonstration of the application of the resulting DNAµPs, the design and assembled DNAµPs are modified to carry additional single‐stranded tails on their surfaces. The modified DNAµPs can either capture other nucleic acids or display CpG motifs to stimulate immune responses. 相似文献
16.
17.
Synthetic nanoscale motors represent a major step in the development of practical nanomachines. This Review summarizes recent progress towards controlling the movement of fuel‐driven nanomotors and discusses the challenges and opportunities associated with the achievement of such nanoscale motion control. Regulating the movement of artificial nanomotors often follows nature's elegant and remarkable approach for motion control. Such on‐demand control of the movement of artificial nanomotors is essential for performing various tasks and diverse applications. These applications require precise control of the nanomotor direction as well as temporal and spatial regulation of the motor speed. Different approaches for controlling the motion of catalytic nanomotors have been developed recently, including magnetic guidance, thermally driven acceleration, an electrochemical switch, and chemical stimuli (including control of the fuel concentration). Such ability to control the directionality of artificial nanomotors and to regulate their speed offers considerable promise for designing powerful nanomachines capable of operating independently and meeting a wide variety of future technological needs. 相似文献
18.
19.
Brandon Lu Simon Vecchioni Yoel P. Ohayon Karol Woloszyn Tiffany Markus Chengde Mao Nadrian C. Seeman James W. Canary Ruojie Sha 《Small (Weinheim an der Bergstrasse, Germany)》2023,19(3):2205830
The rational design of nanoscopic DNA tiles has yielded highly ordered crystalline matter in 2D and 3D. The most well-studied 3D tile is the DNA tensegrity triangle, which is known to self-assemble into macroscopic crystals. However, contemporary rational design parameters for 3D DNA crystals nearly universally invoke integer numbers of DNA helical turns and Watson–Crick (WC) base pairs. In this study, 24-bp edges are substituted into a previously 21-bp (two helical turns of DNA) tensegrity triangle motif to explore whether such unconventional motif can self-assemble into 3D crystals. The use of noncanonical base pairs in the sticky ends results in a cubic arrangement of tensegrity triangles with exceedingly high symmetry, assembling a lattice from winding helical axes and diamond-like tessellation patterns. Reverting this motif to sticky ends with Watson–Crick pairs results in a trigonal hexagonal arrangement, replicating this diamond arrangement in a hexagonal context. These results showcase that the authors can generate unexpected, highly complex, pathways for materials design by testing modifications to 3D tiles without prior knowledge of the ensuing symmetry. This study expands the rational design toolbox for DNA nanotechnology; and it further illustrates the existence of yet-unexplored arrangements of crystalline soft matter. 相似文献
20.
本文首先介绍了G四链体、双链结构、纳米管、折纸和立体笼状结构等DNA纳米结构用于药物载体时的载药特点;随后根据不同的刺激方式,从生物分子、pH、光和其他响应四个方面介绍了DNA纳米结构控制药物释放的途径及其利弊;进而对后续的研究提出了两点发展建议。 相似文献