首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Properties of single and hybrid fillers with polypropylene (PP) composites were studied in this research work. The effect of filler loadings of three types of mineral fillers, namely talc, silica, and CaCO3, was investigated. In hybrid composites systems, the effect of silica/talc (SI/T) and CaCO3/talc (CC/T) filler ratios at 40 wt% was determined. Generally, the results demonstrated that SI/T has higher modulus than CC/T but both hybrids did not have a significant effect on PP strength. In thermal properties, both hybrids have a nucleating ability as they increase the crystallization temperature and onset of crystallization temperature of PP. Results of analysis by TGA revealed that SI/T increased thermal stability of PP composites more than CC/T. Better flammability of the SI/T system is exhibited by lower burning rates of SI/T than CC/T, which indicates better thermal stability of the hybrid system. J. VINYL ADDIT. TECHNOL., 20:160–167, 2014. © 2014 Society of Plastics Engineers  相似文献   

2.
Hybrid composites based on poly(ether‐ether‐ketone) (PEEK) were fabricated with fly ash and mica. Nearly 5, 10, and 15 wt% of fly ash were replaced by mica of the optimized fly ash reinforced composites and were subjected to dynamical mechanical analysis to determine the dynamic properties as a function of temperature. The storage modulus E′ was found to decrease with the increase of weight fraction of mica. Loss modulus was also found to decrease with loading while the damping property was found to increase marginally. Peak height of tan δ for hybrid composites were decreased by varying combinations of fly ash with mica. It is probably due to improved crystallinity of PEEK and strong interaction between the fillers and PEEK matrix. Cole–Cole analysis was made to understand the phase behavior of the composite samples. Kubat parameter was calculated to study the adhesion between matrix and filler of the fabricated composites. Without surface modification for inorganic fillers, the distribution of two different shape filler particles appears to be reasonably uniform. The use and limitation of various theoretical equations to predict the tan δ and storage modulus of filler reinforced composites have been discussed. Addition of both fillers opens up new opportunities for development of high‐performance multifunctional materials suitable for industrial applications. Scanning electron micrographs of tensile fracture surfaces of composites demonstrated filler–matrix bonding. POLYM. COMPOS., 35:68–78, 2014. © 2013 Society of Plastics Engineers  相似文献   

3.
The effect of various fillers on the mechanical, barrier, and flammability properties of polypropylene (PP) was studied. PP was filled with 4 wt% of nano‐sized calcium carbonate, titanium dioxide, organoclay, and multiwalled carbon nanotube (MWCNT). For comparison, micron‐sized calcium carbonate was also studied. Two‐step masterbatch dilution approach of the composites suggested no or only minor improvements in Young's modulus and tensile yield strength, whereas their ductility decreased compared to coupling agent‐modified PP matrix. The water vapor transmission results of filled films showed increased permeability compared to their coupling agent‐modified counterpart. Oxygen permeability, however, decreased for the composites. The MWCNT‐filled matrix showed the highest barrier and fire performance, attributed mainly to its higher filler volume content, but also other reasons such as the effect of filler dispersion, composite's thermal stability, and polymer crystallinity were discussed.POLYM. COMPOS., 2013. © 2013 Society of Plastics Engineers  相似文献   

4.
The objective of the study was to generate degradable polypropylene nanocomposites by incorporation of pro‐oxidant and different fillers like silica, silicate, and thermally reduced graphene. Graphene‐based composites exhibited higher crystallinity attributed to better dispersion and high aspect ratio platelets. Graphene composites with 2.5% additive content significantly enhanced the peak degradation temperature to 464°C as compared to 448°C for pure polymer. The processing conditions used for the nanocomposite generation were optimum as a uniform distribution of filler particles (or platelets) was observed in the PP matrix. The tensile modulus of the graphene composite with 2.5% additive content was 80% higher than pure PP, as compared to 60 and 30% for silicate and silica composites, respectively. Similarly, the storage modulus of the graphene nanocomposite with 1% additive content had 30% increment at 40°C as compared to pure PP. PP‐additive blends as well as PP nanocomposites with silica and silicate were observed to attain 100% degree of embrittlement within 6 months of UV exposure at 30°C. Graphene composites, though, had delayed photo‐degradation due to UV absorption by the platelets and high aspect ratio platelets acting as oxygen barrier for PP matrix, but the pro‐oxidant was successful in attaining controlled degradation. POLYM. ENG. SCI., 56:1229–1239, 2016. © 2016 Society of Plastics Engineers  相似文献   

5.
Because of the poor impact behavior of polypropylene (PP) at low temperatures, the blending of PP with metallocene‐polymerized polyethylene (mPE) elastomers was investigated in this study. However, a reduced modulus of the overall blend was inevitable because of the addition to elastomers. To obtain a balance of the properties, we introduced rigid inorganic fillers to PP/mPE blends. The performance of the composites was characterized with tensile and Charpy notched impact tests, and the fracture morphology was examined with scanning electron microscopy. The results showed that the effects of fillers in a brittle matrix and in a ductile matrix were quantitatively different. For PP/mPE/filler ternary composites, the dependence of Young's modulus and yield strength on CaCO3 content was not significant compared with that of PP/filler binary composites, whereas the elongation at break and tensile toughness at room temperature for PP/mPE/filler systems were more improved. The impact strength of the PP/mPE blends filled with untreated glass beads and CaCO3 at a low temperature was lowered because of the weak interfacial bond. However, the values of the impact strength of the PP/mPE/filler composites at a low temperature remained at a high level compared with that of pure PP. In particular, a PP/mPE blend filled with surface‐treated kaolin had a higher low‐temperature impact toughness than the unfilled blend. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 83: 3029–3035, 2002; DOI 10.1002/app.2333  相似文献   

6.
Comparison was made between the properties of recycled newspaper (RNP)/carbon black (CB) and recycled newspaper (RNP)/silica hybrid filled polypropylene (PP)/natural rubber (NR) composites. The properties studied were mechanical, thermal, and morphological. These composites were also subjected to natural weathering, i.e., the tropical climate in Penang, Malaysia, for 6 months. The incorporation of CB and silica at all weight ratios of RNP/CB and RNP/silica hybrid gave increases in tensile strength, elongation at break (EB), Young's modulus, melting temperature (Tm), heat of fusion of composites (ΔHf(com)), crystallinity of composites (Xcom), and the crystallinity of PP (XPP). As expected, the tensile properties (except for Young's modulus), Tm, ΔHf(com), Xcom, and XPP of the composites exhibited lower values after weathering than before weathering. The extent of chemical degradation was studied by Fourier transform infrared spectroscopy, and the results showed the formation of several functional groups, i.e., hydroxyl, hydroperoxide, vinyl, carboxylic acid, and ketone. At the same filler weight ratio, the composites filled with RNP/CB hybrid showed higher values of tensile strength and EB but lower values of Young's modulus, ΔHf(com), XPP, and XPP, as compared to those with the RNP/silica hybrid under weathering conditions. The good retention in tensile properties indicated that the replacement of RNP by CB and silica improved the weatherability performance of the PP/NR composites. J. VINYL ADDIT. TECHNOL., 2008. © 2008 Society of Plastics Engineers  相似文献   

7.
The influence of two types of surface treatments (aminosilane and Lica‐12) on the mechanical and thermal properties of polypropylene (PP) filled with single and hybrid filler (silica and mica) was studied. An improvement in tensile properties and impact strength was found for both treatments compared to those of untreated composites. However, the filler with silane coupling agent showed better improvement compared to the filler with Lica‐12 coupling agent. This was due to better adhesion between filler and matrix. Thermal analysis indicates that surface treatments increased the nucleating ability of filler, but decreased the coefficient of thermal expansion of PP composites. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

8.
Polyethylene terephthalate (PET) waste was converted into carbon and the feasibility of utilizing it as a reinforcing filler material in a polypropylene (PP) matrix was investigated. The carbon produced by the pyrolysis of waste PET at 900°C in nitrogen atmosphere contains high carbon content (>70 wt%). PP/carbon composites were produced by melt blending process at varying loading concentrations. Scanning electron microscopy images at the fractured surface revealed that the carbon filler has better compatibility with the PP matrix. The mechanical, thermal, and rheological properties and surface morphology of the prepared composites were studied. The thermogravimetric analysis studies showed that the thermal stability of the PP/carbon composites was enhanced from 300 to 370°C with 20 wt% of carbon. At lower angular frequency (0.01 rad/s), the storage modulus (G′) of PP was 0.27 Pa and those of PP with 10 and 20 wt% carbon was 4.06 and 7.25 Pa, respectively. Among the PP/carbon composite prepared, PP with 5 wt% carbon showed the highest tensile strength of 38 MPa, greater than that of neat PP (35 MPa). The tensile modulus was enhanced from 0.9 to 1.2 GPa when the carbon content was increased from 0 to 20 wt%.  相似文献   

9.
The recycling of construction materials has been the subject of much research in past years. In this study, the use of construction and demolition wastes (CDWs) as mineral fillers in hybrid wood–polymer composites was studied. Two types of waste materials were used as fillers in the composites: (1) a mixture consisting of waste mineral wool (MW) and plasterboard (PB) and (2) mixed CDWs. The performance of the composites was evaluated from their mechanical properties and water‐absorption behavior. We found in the study that the addition of mineral fillers decreased the flexural strength and modulus values of the wood–polypropylene (PP) composites. On the other hand, the exchange of part of the wood with a mineral filler resulted in an increase in the impact strength of the composite. The composite manufactured with the combination of MW and PB had the lowest water absorption. The decrease in wood loading resulted in improved dimensional stability in the hybrid wood–mineral filler–PP composites. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 43412.  相似文献   

10.
The effects of different types of fillers and filler loadings on the properties of carboxylated nitrile rubber (XNBR) latex were identified. Silica, mica, carbon black (CB; N330), and calcium carbonate (CaCO3) were used as fillers with filler loadings of 10, 15, and 20 parts per hundred rubber. Furnace ashing and Fourier transform infrared analysis proved that interaction existed between the fillers and XNBR latex films. The morphology of the filled XNBR films was significantly different for different types of fillers. Mica and CaCO3 fillers showed uneven distribution within the XNBR film, whereas other fillers, such as silica and CB, showed homogeneous distribution within the films. In the observation, silica and mica fillers also illustrated some degree of agglomeration. The mechanical properties (e.g., tensile and tear strengths) showed different trends with different types of fillers used. For silica and mica fillers, the mechanical properties increased with filler loadings up to a certain loading, and decreased with higher filler loadings. For CB filler, the mechanical properties increased gradually with increasing filler loadings. CaCO3 fillers did not increase the mechanical properties. The crosslinking density of the XNBR films increased when they were incorporated with fillers because of the presence of elastomer–filler and filler–filler interactions. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

11.
Palm kernel shell (PKS), a waste from the oil palm industry, has been utilized as filler in low‐density polyethylene (LDPE) eco‐composites in the present work. The effect of PKS content and coconut oil coupling agent (COCA) on tensile properties, water absorption, and morphological and thermal properties of LDPE/PKS eco‐composites was investigated. The results show the increase of PKS content decreased the tensile strength and elongation at break, but increased the tensile modulus, crystallinity, and water absorption of eco‐composites. The presence of COCA as coupling agent improved the filler‐matrix adhesion yield to increase the tensile strength, tensile modulus, crystallinity, and reduced water absorption of eco‐composites. The better interfacial adhesion between PKS and LDPE with the addition of COCA was also evidenced by scanning electron microscopy studies. J. VINYL ADDIT. TECHNOL., 22:200–205, 2016. © 2014 Society of Plastics Engineers  相似文献   

12.
In this study, morphology, and dynamic and mechanical properties of polypropylene–mica (PP–Mica) composites were investigated. To enhance the adhesion between PP and mica, maleic anhydride‐grafted PP (MAPP) and treated mica with silane coupling agent were used. MAPP (as a compatibilizer) and silane coupling agent (as a filler surface modifier) caused an interfacial bonding in the mica filled polypropylene composites. The effect of mica content, MAPP, and treated mica with silane coupling agent on the morphological properties were investigated by Scanning Electron Microscopy (SEM). The results showed that with increasing MAPP or silane coupling agent, dispersion of filler and adhesion between PP and filler were improved. Mechanical data showed that with increasing MAPP and mica treated with silane coupling agent, tensile modulus and flextural strength of composites were enhanced. Dynamic rheological behavior of composites was also investigated within the domain of linear viscoelasticity. The rheological observations indicated that the complex viscosity, storage and loss moduli increased, and tan δ decreased with increasing mica content. POLYM. COMPOS. 27:491–496, 2006. © 2006 Society of Plastics Engineers.  相似文献   

13.
Influence of different inorganic particulate mineral fillers on polycarbonate composites was explored. Among all the fillers assessed here only boron nitride and mica could appreciably reduce the thermal expansion of polycarbonate, particularly along the direction of flow. While measured in the normal to flow (cross‐flow) direction, the coefficient of thermal expansion (CTE) values decreased marginally in presence of boron nitride and mica as compared to the unfilled specimen. The anisotropicity in CTE is presumable due to preferential orientation of boron nitride and mica along the direction of flow in the injection molded samples. The effectiveness of fillers in reducing CTE of the polycarbonate composites was correlated to the dispersion of fillers in the polymer matrix. Better dispersion of boron nitride and mica, as observed through SEM, ensured their improved interaction with the matrix and thereby reducing the CTE. It was observed that in presence of particulate fillers the impact performance of the composites decreased appreciably with an increase in tensile modulus, in general. The flow behavior of the composites was by large dependent on the types of fillers used. In presence of some of the fillers such as BaSO4, ZnO, ZnS, TiO2, and alumina, flow of the composites increases significantly, primarily associated to appreciable reduction in molecular weights of the polycarbonate. On the other hand, with boron nitride flow remained almost unchanged upon its addition of 5 vol %. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

14.
Some results of experiments on the mechanical and rheological properties of mineral filled polypropylene were presented. Single filler and hybrid filler composites of talc and calcium carbonate (CaCO3) were prepared in a co‐rotating twin‐screw extruder. The effect of filler type, filler content, and coupling agent on the mechanical and rheological properties of the polypropylene were studied. The coupling agent was maleic anhydride‐grafted polypropylene (PP‐g‐MA). It was found that the mechanical properties are affected by filler type, filler concentration, and the interaction between filler and matrix. The tensile strength of the composite is more affected by the talc while the impact strength is influenced mostly by CaCO3 content. The elongation at break of PP/CaCO3 composites was higher than that of PP/talc composites. The incorporation of coupling agent into PP/mineral filler composites increased the mechanical properties. Rheological properties indicated that the complex viscosity and storage modulus of talc filled samples were higher than those of calcium carbonate filled samples while the tan δ was lower. The rheological properties of hybrid‐filler filled sample were more affected by the talc than calcium carbonate. The PP‐g‐MA increased the complex viscosity and storage modulus of both single and hybrid composites. POLYM. COMPOS., 2009. © 2009 Society of Plastics Engineers  相似文献   

15.
This article reports the mechanical, thermal, and morphological properties of polypropylene (PP)‐chicken eggshell (ES) composites. Mechanical properties like tensile strength, tensile modulus, izod impact strength, flexural modulus of PP composites with normal (unmodified) eggshell and chemically treated ES [modified ES (MES) with isophthalic acid] have been investigated. PP–calcium carbonate (CaCO3) composites, at the same filler loadings, were also prepared and used as reference. The results showed that PP composites with chemically MES had better mechanical properties compared to the unmodified ES and CaCO3 composites. An increase of about 3–18% in tensile modulus, 4–44% in izod impact strength and 1.5–26% in flexural modulus at different filler loading was observed in MES composites as compared to unmodified ES composites. Scanning electron microscopy (SEM) micrographs of fractured tensile specimens confirmed better interfacial adhesion of MES with polymer matrix resulting into lower voids and plastic deformation resulting in improved mechanicals of the composites. TEM micrographs showed acicular needle shaped morphology for modified ES and have contributed to better dispersion which is the prime reason for enhancement of all the mechanical properties. At higher filler loading, the modulus of MES composite was found to be higher by 5% as compared to commercial CaCO3 composites. POLYM. COMPOS., 35:708–714, 2014. © 2013 Society of Plastics Engineers  相似文献   

16.
Maleic‐anhydride‐grafted polypropylene (PP‐g‐MAH) was added, as a compatibilizer, to polypropylene (PP) composites filled with a hindered phenol and modified carbon black (CB). The interaction between the modified CB and PP‐g‐MAH, as proved by Fourier transform infrared spectroscopy, had a beneficial effect on the mechanical properties of the PP/(modified CB) composites and prevented the sharp decrease of the mechanical properties of these composites at higher filler concentration. The storage modulus of PP/(modified CB) was increased significantly by the incorporation of PP‐g‐MAH, especially when the temperature was lower than 0°C. When the content of PP‐g‐MAH was 5 wt% and the loading of the modified CB was 2 wt%, the best tensile strength was obtained. The system showed the best flexural strength and impact strength when the loading of the modified CB was 1 wt%. J. VINYL ADDIT. TECHNOL., 2011. © 2011 Society of Plastics Engineers  相似文献   

17.
Chitosan was used as filler in polypropylene (PP) polymer. In order to improve compatibility between chitosan and PP, chitosan was chemically modified with 3-aminopropyltriethoxysilane (3-APE). The results show that the increasing of filler content decreased tensile strength and elongation at break, but increased Young's modulus of composites. The treated composites exhibit higher tensile strength and Young's modulus, but lower elongation at break compared untreated composites. The addition of 3-APE has improved thermal properties such as thermal stability and crystallinity of treated composites. SEM study of the tensile fracture surface of treated composites shows better interfacial interaction and adhesion between the chitosan-PP matrix.  相似文献   

18.
Particulate‐reinforced thermoplastic composites are designed to improve the properties and to lower the overall cost of engineering polymers. In general, the performance of filled polymers is decided on the basis of the interface attraction of filler and polymers. Therefore, a coupling agent, tetra isopropyl titanate (TYZOR TPT), was used to facilitate the link between filler and matrix (the latter consisting of nylon‐6). Mica of different particle sizes (37 and 75 μm) was used. Filler (75 μm mica) was added to the matrix at a 30 wt% concentration. TPT at various concentrations was used to determine the optimal concentration (1 wt%), and henceforth to treat both particle sizes of mica. The tensile strength, Young's modulus, and heat distortion temperature were significantly improved with the incorporation of TPT (1 wt%). Morphological studies revealed strong interfacial interactions between the filler and the matrix on incorporating TPT. POLYM. ENG. SCI., 45:1479–1486, 2005. © 2005 Society of Plastics Engineers  相似文献   

19.
The mechanical, morphological behavior and water absorption characteristics of polypropylene (PP) and silica, or PP and rice‐husk, composites have been studied. The silica used in this study as filler was a commercial type produced from soluble glass or rice husks. The compatibilizing effect of PP grafted with monomethyl itaconate (PP‐g‐MMI) and/or with vinyltriethoxysilane (PP‐g‐VTES) as polar monomers on the mechanical properties and water absorption was also investigated. In general, a high loading of the studied fillers in the polymer matrix increases the stiffness and the water absorption capacity. This effect is more noticeable in the tensile modulus of the PP/silica composite with PP‐g‐VTES as compatibilizer. However, the increase of the rice‐husk charge as a natural filler in the PP matrix decreases the stiffness, and in the presence of PP‐g‐MMI as compatibilizer in PP/rice‐husk, the tensile modulus and water absorption of the composite were improved. The better adhesion and phase continuity in the PP/silica and PP/rice‐husk composites with different compatibilizers was confirmed by the morphological study. Copyright © 2004 Society of Chemical Industry  相似文献   

20.
Natural‐rubber‐based hybrid composites were prepared by the mixture of short cellulose fibers and silica of different relative contents with a 20‐phr filler loading with a laboratory two‐roll mill. The processability and tensile properties of the hybrid composites were analyzed. The tensile modulus improved, but the tensile strength and elongation at break decreased with increasing cellulose fiber content. The scorch safety improved with the addition of 5‐phr cellulose fiber in the composites. The Mooney viscosity significantly decreased with increasing cellulose fiber content. To modify the surface properties of the cellulose fiber and silica fillers, a silane coupling agent [bis(triethoxysilylpropyl)tetrasulfide, or Si69] was used. The effects of Si69 treatment on the processing and tensile properties of the hybrid composites were assessed. We found that the silane treatment of both fillers had significant benefits on the processability but little benefit on the rubber reinforcement. The strength of the treated hybrid composite was comparable to that of silica‐reinforced natural rubber. Furthermore, to investigate the filler surface modification and to determine the mixing effects, infrared spectroscopic and various microscopic techniques, respectively, were used. From these results, we concluded that the fillers were better dispersed in the composites, and the compatibility of the fillers and natural rubber increased with silane treatment. In conclusion, the hybridized use of short cellulose fibers from a renewable resource and silica with Si69 presented in this article offers practical benefits for the production of rubber‐based composites having greater processability and more environmental compatibility than conventional silica‐filler‐reinforced rubber. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号