首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The growing demand for analysis of the genomes of many species and cancers, for understanding the role of genetic variation among individuals in disease, and with the ultimate goal of deciphering individual human genomes has led to the development of non‐Sanger reaction‐based technologies towards rapid and inexpensive DNA sequencing. Recent advancements in new DNA sequencing technologies are changing the scientific horizon by dramatically accelerating biological and biomedical research and promising an era of personalized medicine for improved human health. Two single‐molecule sequencing technologies based on fluorescence detection are already in a working state. The newly launched and emerging single‐molecule DNA sequencing approaches are reviewed here. The current challenges of these technologies and potential methods of overcoming these challenges are critically discussed. Further research and development of single‐molecule sequencing will allow researchers to gather nearly error‐free genomic data in a timely and inexpensive manner.

  相似文献   


2.
The mechanobiology of receptor–ligand interactions and force‐induced enzymatic turnover can be revealed by simultaneous measurements of force response and fluorescence. Investigations at physiologically relevant high labeled substrate concentrations require total internal reflection fluorescence microscopy or zero mode waveguides (ZMWs), which are difficult to combine with atomic force microscopy (AFM). A fully automatized workflow is established to manipulate single molecules inside ZMWs autonomously with noninvasive cantilever tip localization. A protein model system comprising a receptor–ligand pair of streptavidin blocked with a biotin‐tagged ligand is introduced. The ligand is pulled out of streptavidin by an AFM cantilever leaving the receptor vacant for reoccupation by freely diffusing fluorescently labeled biotin, which can be detected in single‐molecule fluorescence concurrently to study rebinding rates. This work illustrates the potential of the seamless fusion of these two powerful single‐molecule techniques.  相似文献   

3.
4.
5.
6.
7.
The fabrication and characterization of a metallized nanopore structure for the sensing of single molecules is described. Pores of varying diameters (>10 nm) are patterned into free‐standing silicon nitride membranes by electron‐beam lithography and reactive ion etching. Structural characterization by transmission electron microscopy (TEM) and tomography reveals a conical pore shape with a 40° aperture. Metal films of Ti/Au are vapor deposited and the pore shape and shrinking are studied as a function of evaporated film thickness. TEM tomography analysis confirms metalization of the inner pore walls as well as conservation of the conical pore shape. In electrical measurements of the transpore current in aqueous electrolyte solution, the pores feature very low noise. The applicability of the metallized pores for stochastic sensing is demonstrated in real‐time translocation experiments of single λ‐DNA molecules. We observe exceptionally long‐lasting current blockades with a fine structure of distinct current levels, suggesting an attractive interaction between the DNA and the PEGylated metallic pore walls.  相似文献   

8.
9.
10.
11.
12.
DNA linearization by nanoconfinement has offered a new avenue toward large‐scale genome mapping. The ability to smoothly interface the widely different length scales from cell manipulation to DNA linearization is critical to the development of single‐cell genomic mapping or sequencing technologies. Conventional nanochannel technologies for DNA analysis suffer from complex fabrication procedures, DNA stacking at the nanochannel entrance, and inefficient solution exchange. In this work, a dynamic and tunable confinement strategy is developed to manipulate and linearize genomic‐length DNA molecules from a single cell. By leveraging pneumatic microvalve control and elastomeric collapse, an array of nanochannels with confining dimension down to 20 nm and length up to sub‐millimeter is created and can be dynamically tuned in size. The curved edges of the microvalve form gradual transitions from microscale to nanoscale confinement, smoothly facilitating DNA entry into the nanochannels. A unified micro/nanofluidic device that integrates single‐cell trapping and lysis, DNA extraction, purification, labeling, and linearization is developed based on dynamically controllable nanochannels. Mbp‐long DNA molecules are extracted directly from a single cell and in situ linearized in the nanochannels. The device provides a facile and promising platform to achieve the ultimate goal of single‐cell, single‐genome analysis.  相似文献   

13.
14.
15.
Interactions between biological molecules are fundamental to biology. Probing the complex behaviors of biological systems at the molecular level provides new opportunities to uncover the wealth of molecular information that is usually hidden in conventional ensemble experiments and address the “unanswerable” questions in the physical, chemical and biological sciences. Nanometer‐scale materials are particularly well matched with biomolecular interactions due to their biocompatibility, size comparability, and remarkable electrical properties, thus setting the basis for biological sensing with ultrahigh sensitivity. This brief review aims to highlight the recent progress of the burgeoning field of single‐molecule electrical biosensors based on nanomaterials, with a particular focus on single‐walled carbon nanotubes (SWNTs), for better understanding of the molecular structure, interacting dynamics, and molecular functions. The perspectives and key issues that will be critical to the success of next‐generation single‐molecule biosensors toward practical applications are also discussed, such as the device reproducibility, system integration, and theoretical simulation.  相似文献   

16.
Plasmonic and nanopore sensors have separately received much attention for achieving single‐molecule precision. A plasmonic “hotspot” confines and enhances optical excitation at the nanometer length scale sufficient to optically detect surface–analyte interactions. A nanopore biosensor actively funnels and threads analytes through a molecular‐scale aperture, wherein they are interrogated by electrical or optical means. Recently, solid‐state plasmonic and nanopore structures have been integrated within monolithic devices that address fundamental challenges in each of the individual sensing methods and offer complimentary improvements in overall single‐molecule sensitivity, detection rates, dwell time and scalability. Here, the physical phenomena and sensing principles of plasmonic and nanopore sensing are summarized to highlight the novel complementarity in dovetailing these techniques for vastly improved single‐molecule sensing. A literature review of recent plasmonic nanopore devices is then presented to delineate methods for solid‐state fabrication of a range of hybrid device formats, evaluate the progress and challenges in the detection of unlabeled and labeled analyte, and assess the impact and utility of localized plasmonic heating. Finally, future directions and applications inspired by the present state of the art are discussed.  相似文献   

17.
18.
A tetrairon(III) single‐molecule magnet is deposited using a thermal evaporation technique in high vacuum. The chemical integrity is demonstrated by time‐of‐flight secondary ion mass spectrometry on a film deposited on Al foil, while superconducting quantum interference device magnetometry and alternating current susceptometry of a film deposited on a kapton substrate show magnetic properties identical to the pristine powder. High‐frequency electron paramagnetic resonance spectra confirm the characteristic behavior for a system with S = 5 and a large Ising‐type magnetic anisotropy. All these results indicate that the molecules are not damaged during the deposition procedure keeping intact the single‐molecule magnet behavior.  相似文献   

19.
The detection and quantification of ionizing radiation damage to DNA at a single-molecule level by atomic force microscopy (AFM) is reported. The DNA damage-detection technique combining supercoiled plasmid relaxation assay with AFM imaging is a direct and quantitative approach to detect gamma-ray-induced single- and double-strand breaks in DNA, and its accuracy and reliability are validated through a comparison with traditional agarose gel electrophoresis. In addition, the dependence of radiation-induced single-strand breaks on plasmid size and concentration at a single-molecule level in a low-dose (1 Gy) and low-concentration range (0.01 ng microL(-1)-10 ng microL(-1)) is investigated using the AFM-based damage-detection assay. The results clearly show that the number of single-strand breaks per DNA molecule is linearly proportional to the plasmid size and inversely correlated to the DNA concentration. This assay can also efficiently detect DNA damage in highly dilute samples (0.01 ng microL(-1)), which is beyond the capability of traditional techniques. AFM imaging can uniquely supplement traditional techniques for sensitive measurements of damage to DNA by ionizing radiation.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号