首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
When a large super high‐rise building taller than the surrounding tall buildings is built in a dense urban area, the aerodynamic interference effects of the surrounding buildings on the proposed building attract much attention, while the interference effects of the taller high‐rise building on the nearby existing buildings are often ignored. Based on a series of wind tunnel tests, the interference effects of a proposed taller high‐rise building, an adjacent equal‐height partner building, and relatively short background buildings on the target building's local wind pressures are analysed in this paper. Two‐dimensional numerical simulation are carried out to further understand the interference mechanism in some cases. The test results show that the influence of a nearby proposed taller high‐rise building may lead to wind‐induced damage on the interfered shorter buildings' envelopes. The envelope structures of other surrounding buildings facing the side of the proposed building need to be given more attention.  相似文献   

2.
结合某高层建筑风洞模型试验,详细分析了不同工况下结构的风致响应,对干扰效应进行了深入研究。结果表明:基底弯矩的干扰效应主要表现为遮挡效应,遮挡使峰值弯矩减小,但是干扰位于侧风向或者下风向时,有可能使结构的峰值弯矩增大。受扰后,基底弯矩背景分量的变化规律与平均分量较为类似,共振分量的变化规律不明显。峰值加速度受扰后的变化也没有规律性。  相似文献   

3.
For investigation of the wind load characteristics on high‐rise buildings with opening, a series of rigid rectangular high‐rise building models with opening were tested by synchronous multi‐pressure sensing system (SMPSS) in a boundary wind tunnel. Influence parameters including different opening heights, opening rates, opening patterns, and terrain categories are studied in detail. Based on the test results, the local wind force coefficients, base moment coefficients, and power spectral densities were discussed. The results indicated that the opening could affect the wind loads acting on high‐rise buildings to different extent. The distinct reduction of wind loads on high‐rise buildings was found at along‐wind direction, which could be evaluated by a proposed simplified expression accordingly. This study aims to provide useful information for the wind‐resistant design of high‐rise buildings with opening.  相似文献   

4.
To reduce across‐wind effects on high‐rise buildings, this paper introduces a new active aerodynamic control named steady suction. To test its effect, the control mechanism of steady suction is discussed first, and then, a synchronization pressure test was conducted in a wind tunnel to measure the across‐wind loading on a high‐rise model (Commonwealth Advisory Aeronautical Research Council standard high‐rise building model). A series of analytical methods were used to compare the different effects on across‐wind aerodynamic forces caused by different parameters. The results show that when the wind blows straight on the wide side of the model, steady suction arranged on the narrow side close to the leading edge can effectively reduce the fluctuating base moment. When the wind blows straight on the narrow side, steady suction arranged on the middle of the wide side effectively reduces the fluctuating base moment. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

5.
受扰状态下高层建筑的静动力响应明显不同于单体建筑。以一实际姊妹塔楼为研究对象,根据风洞试验中获得的风压分布结果,计算塔楼结构的风致响应。风洞试验及结构响应计算不仅考虑了两栋塔楼同时存在的情况,还考虑一栋塔楼先期建成,另一塔楼尚未建造的情况。细致分析了不同风向下结构的平均及脉动位移响应、静动力干扰因子的特点。结果表明,施扰建筑位于受扰建筑正前方时具有最大的干扰效应,此时受扰塔楼的总位移峰值最小;而当受扰建筑处于施扰建筑下游时,在风向偏斜时,受扰塔楼的总位移峰值最大。  相似文献   

6.
Tall buildings are vulnerable to lateral loading. The facades of these buildings are susceptible to wind loads. It is very difficult to assess the wind condition around the tall building in the presence of other surrounding buildings due to the wind interference effect. An experiment is carried out in the Boundary Layer Wind Tunnel at Tokyo Polytechnic University, Japan, to study the wind interference effect on tall buildings with varying plan ratios. The maximum and minimum local peak pressure coefficient contours on front face of the principal building are plotted. The interference effect is quantified in terms of interference zone charts. It is observed that interference zones extend over a larger area as the building plan ratios increases. The minimum interference factor depends on the plan ratios of the interfering building especially along the oblique direction. The results of this study may be useful for the preliminary design of cladding of tall buildings with interfering buildings.  相似文献   

7.
A vast quantity of measurements of wind‐induced non‐Gaussian effects on buildings call for the burgeoning development of more advanced extrema estimation approaches for non‐Gaussian processes. In this study, a well‐directed method for estimating the peak factor and modeling the extrema distribution for non‐Gaussian processes is proposed. This method is characterized by using two fitted probability distributions of the parent non‐Gaussian process to separately fulfill the estimations of the extrema on long‐tail and short‐tail sides. In this method, the Johnson transformation is adopted to be the probabilistic model for fitting the parent distribution of the non‐Gaussian process due to its superior fitting goodness and universality. For each dataset, two Johnson transformations will be established by two parameter estimation methods to individually estimate the extrema on two sides. Then a Gumbel assumption is applied for conveniently determining the non‐Gaussian peak factor. This method is validated through long‐duration wind pressure records measured on the model surfaces of a high‐rise building in wind tunnel test. The results show that the proposed method is more accurate and robust than many existing ones in estimating peak factors for non‐Gaussian wind pressures.  相似文献   

8.
采用本文第1部分所介绍的试验技术和软件分析工具,研究了不同宽度比(Br)的两个和三个建筑物间的横风向动力干扰效应。和顺风向响应分析一样,处于斜列的上游施扰建筑的尾流同样是引起受扰建筑横风向响应增大的主要原因,但试验结果同时也显示,当施扰建筑和受扰建筑处于并列和串列时,也会使受扰结构的横风向响应显著加大。在B、D两类地貌下,和受扰建筑大小一样的两个施扰建筑的干扰因子(IF)会比单个施扰建筑情况分别高出80%和25%。小宽度的上游建筑在低风速时就会产生涡激共振而产生较大的IF值,尤其要指出的是位于(3.1b,0)上的Br=0.5的施扰建筑物在B类地貌下和较低的风速下会产生高达7.09的IF值。粗糙化地貌的高湍流度会对上游施扰建筑尾流的旋涡形成产生一定的抑制作用,故在D类地貌下的IF值要远小于B类地貌情况,但在D类地貌下观察到的IF值仍有1.83。  相似文献   

9.
10.
随着社会经济的高速发展,城市低层建筑已不能满足人类的居住需求,高层建筑的出现应用满足了此方面的困难,在结构设计中,高层建筑相比于低层建筑承受更大的风荷载作用,而风荷载的不确定性因素导致结构设计的繁琐,同时基于低层建筑的荷载分析难以应用于高层建筑,因此研究高层建筑结构在风荷载作用下的响应是十分必要的。基于当前结构风工程的理论,对高层建筑结构下风荷载的研究方法进行了进一步探讨。  相似文献   

11.
With the nonstationary wind‐induced acceleration data from full‐scale measurements, an approach for estimation of the wind‐induced overturning bending moments for super‐tall buildings was proposed in this paper. The empirical mode decomposition was employed to decompose the measured acceleration data into a set of intrinsic mode functions and a residual component. To remove the baseline offset, the residual component and the intrinsic mode function components with long‐period were eliminated before their integrations into velocity and displacement components. Then, the intrinsic mode function components, which have the same dominant periods as the natural periods of the studied tall buildings, were extracted from the original signals, and the natural frequency and damping ratio for the first vibration mode of the building were identified. Finally, the wind‐induced overturning bending moments of the building were obtained from the generalized wind loads for the first vibration mode, which could be obtained from the time history analysis of dynamic equation. The Hilbert spectrum of wind‐induced overturning bending moments was utilized to observe its characteristics in both time and frequency domains, and the Strouhal number was thus identified. The proposed scheme and some selected results may be helpful for further understanding of wind effects on super‐tall buildings. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

12.
基于高频底座力天平技术,研究了不同宽度比的两个和三个建筑物间的顺风向动力干扰效应。文中采用了神经网络、统计和谱分析等方法对干扰特性和机理进行了分析。结果显示,当受扰建筑位于上游施扰建筑物的尾流边界时,会产生较大的动力响应;并且两个施扰建筑物的联合干扰作用会比单个施扰建筑物的干扰作用强,在B类地貌下两个施扰建筑物测出的干扰因子(IF)会比单个施扰建筑的增加79%。位于上游的施扰建筑所脱落的旋涡会使受扰建筑产生涡激共振响应并且产生数倍于非共振情况的IF值,尤其对于小宽度的施扰建筑,在较小的折算风速时就会产生涡激共振问题。粗糙化地貌的高湍流度会对上游施扰建筑尾流的旋涡形成产生一定的抑制作用,在D类地貌下的IF值要远小于B类地貌情况,但在D类地貌下观察到IF值仍有2.2。  相似文献   

13.
The robustness of base‐isolated high‐rise buildings is investigated under code‐specified ground motions. Friction‐type bearings are often used in base‐isolated high‐rise buildings to make the natural period of those buildings much longer. While additional damping can be incorporated into every story in passive controlled structures with inter‐story type passive members, that can be incorporated into the base‐isolation story only in the base‐isolated building. This fact leads to the property that, as the number of stories of the building becomes larger, the damping ratio reduces. This characteristic may cause some issues in the evaluation of robustness of base‐isolated high‐rise buildings. The purpose of this paper is to reveal the robustness of base‐isolated high‐rise buildings. A kind of inverse problem for the target drift in the base‐isolation story is formulated in order to determine the required quantity of additional viscous damping. It is demonstrated numerically that, as the base‐isolated building becomes taller, the damping ratio becomes smaller and the ratio of the friction‐type bearings in the total damping becomes larger. This may lead to the conclusion that base‐isolated high‐rise buildings have smaller robustness than base‐isolated low‐rise buildings. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

14.
Structural health monitoring system has been implemented on high‐rise buildings to provide real‐time measurement of structural responses for evaluating their serviceability, safety, and sustainability. However, because of the complex structural configuration of a high‐rise building and the limited number of sensors installed in the building, the complete evaluation of structural performance of the building in terms of the information directly recorded by a structural health monitoring system is almost impossible. This is particularly true when seismic‐induced ground motion is unknown. This paper thus proposes an integrated method that enables the optimal placement of multi‐type sensors on a high‐rise building on one hand and the reconstruction of structural responses and excitations using the information from the optimally located sensors on the other hand. The structural responses measured from multi‐type sensors are fused to estimate the full state of the building in the modal coordinates using Kalman filters, from which the structural responses at unmeasured locations and the seismic‐induced ground motion can be reconstructed. The optimal multi‐type sensor placement is simultaneously achieved by minimizing the overall estimation errors of structural responses at the locations of interest to a desired target level. A numerical study using a simplified finite element model of a high‐rise building is performed to illustrate the effectiveness and accuracy of the proposed method. The numerical results show that by using 3 types of sensors (inclinometers, Global Positioning System, and accelerometers), the proposed method offers an effective way to design a multi‐type sensor system, and the multi‐type sensors at their optimal locations can produce sufficient information on the response and excitation reconstruction.  相似文献   

15.
In this paper, a high‐rise frame‐core tube structure with strengthened stories and high‐position connections, a new landmark building in Wuhan, whose height is 238.6 m, is selected as an example. Construction simulation analysis is carried out by the finite element analysis software ETABS to study the vertical deformation and deformation difference of vertical members under the gravity load, taking the influence of construction processes and shrinkage and creep of concrete into consideration. The results show that there is a significant difference between the vertical deformation of the twin‐tower model with connections and that of the single‐tower model. Some engineering countermeasures are put forward to reduce the vertical deformation difference of the twin‐tower connected structure.  相似文献   

16.
The effects of grid curtains on the local and overall wind loads of a high‐rise building are investigated in detail according to a series of wind pressure and wind force tests on rigid model in a wind tunnel. The effects of grid curtains on the mean and fluctuating wind pressures on windward and sideward walls when the wind direction is parallel to the geometrical axes are investigated, along with the effects of the most unfavorable wind pressures for all wind directions. Furthermore, the effects of grid curtains on the mean and fluctuating aerodynamic forces on the entire building are also analyzed for various wind directions, along with the effects of grid curtains on the aerodynamic force spectra when the wind direction is parallel to the geometric axes. The test results indicate that grid curtains affect the mean and fluctuating windward pressure slightly but greatly influence the large sideward negative pressures. Grid curtains increase the mean and fluctuating windward aerodynamic forces and reduce the fluctuating aerodynamic torsions. According to the aerodynamic force spectra, grid curtains can mainly affect the wind forces in the low‐frequency range. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

17.
Studies on the effect of different shape strategies on wind‐induced responses of super tall buildings have been extensive. However, little systematic research on the influence of aerodynamic shapes on wind pressure distributions of super high‐rise building having a height more than 500 m is reported in the literature. In this paper, a series of wind tunnel tests are conducted on models simulating tapered buildings taller than 500 m with an aspect ratio of 9:1 by applying synchronous pressure measurement technology to investigate the influence of different shape strategies on the wind force coefficients of the cross section (Cs) and on the peak negative pressure distributions on surfaces. The shape strategies considered include tapering of the cross section of a building along its height, chamfered modification, and opening ventilation slots. It is found that the wind force coefficient Cs increase with an increase of the tapering ratio. It is shown that chamfered modification can effectively reduce most of the wind force coefficients Cs to less than 0.9. As for peak wind pressures, a zone having a higher negative pressure is found to locate at the bottom of the side faces of the model. With an increase of the tapering ratio, the peak negative pressure of side faces of the model slightly decreases. Chamfered modification can significantly increase the peak negative pressure at the chamfered location. Furthermore, it is demonstrated that opening ventilation slots had less effect on Cs, but the peak negative pressure can significantly increase at the area of opening ventilation slots and adjacent areas.  相似文献   

18.
错列布置超高层建筑群的干扰效应研究   总被引:1,自引:0,他引:1  
对实际超高层建筑群进行群体和单体塔楼两次同步测压风洞试验。通过两次试验测量结果,考察风向及塔楼位置对顺风向、横风向和扭转方向的主体结构承受风荷载以及围护结构的极值风压的影响,并结合风压试验结果及CFD流场计算结果对干扰机理进行说明。研究结果表明,处于中间位置的2号塔楼的扭转干扰放大作用非常显著,较为不利的风向为110°风向,该风向下扭转方向的静力干扰因子达到1.53;沿弱轴Y方向和扭转方向的动力放大因子达到1.32和1.37。  相似文献   

19.
The 88‐storey Jin Mao Building located in Shanghai has a height of 420·5m and is the highest building in mainland China. Dynamic wind force components on the super‐tall building were measured by high‐frequency force balance technique in a boundary layer wind tunnel for the cases of an isolated Jin Mao Building and the existing surrounding condition under suburban and urban boundary layer flow configurations. Spectral characteristics of along‐wind and across‐wind components and, in particular, the cross‐correlation and coherence among various wind loading components are presented and discussed in detail. Furthermore, the effects of upstream terrain conditions and surrounding buildings on the spectra, cross‐correlation and coherence are investigated. The experimental results show that such effects are significant. Finally, an empirical formula for estimation of the across‐wind overturning moment spectrum for the super‐tall building is presented. Comparisons of the spectra determined by the proposed formula and those obtained from wind tunnel tests are made to examine the applicability of the proposed formula. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

20.
This paper studies wind-induced interference effects on a row of five square-plan tall buildings arranged in close proximity. Mean and fluctuating wind loads are measured on each building member and wind-induced dynamic responses of the building are estimated with the high-frequency force-balance technique. The modifications of building responses from interference over a practical range of reduced velocities are represented by an envelope interference factor. Wind tunnel experiments and response analysis are carried out under all possible angles of wind incidence, at four different building separation distances, and for two arrangement patterns of buildings in the row, that is the parallel and diamond patterns. It is found that building interference leads to amplified dynamic responses in many cases but reduction in responses also occurs at some wind incidence. For a building row of the parallel pattern, five distinct wind incidence sectors of different levels and mechanisms of interference effect can be identified. The largest values of envelope interference factors can reach 2.4 for the torsional responses. When the row of tall buildings is arranged in the diamond pattern, increase in wind excitation occurs at many wind angles due to a “wind catchment” effect. The interference factors have larger peak values, reaching 2.1 in the sway directions and above 4 in torsion. However, all large amplifications of building responses do not occur in the situations of peak resonant dynamic responses of the single isolated building. Thus, the design values of peak dynamic responses of a tall building are not significantly magnified when placed in a row.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号