首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
《Ceramics International》2022,48(9):12291-12298
Nanomaterials offer a wide range of applications in environmental nanotechnology. Hazardous pollutants in the environment are needed to be detected and controlled effectively to avoid human health risks. In this paper, we described the fine-controlled growth of In2O3 nanoparticles embedded on GO nanosheets by a facile precipitation method. The In2O3@GO nanocomposites exhibited outstanding gas sensing performance as compared with pure In2O3 nanoparticles towards NO2. At 225 °C, the sensor displayed high selectivity, best response (78) to 40 ppm NO2, quick response, and recovery times of 106s/42s. The improved sensing performances of the nanocomposite were attributed to large surface area, high gas adsorption-desorption capability, and the formation of p-n heterojunctions between In2O3 nanoparticles and GO nanosheets. The excellent gas detecting activities validate In2O3@GO nanocomposites as a promising candidate in the NO2 gas sensor industry.  相似文献   

2.
《Ceramics International》2016,42(14):15876-15880
The influence of ZnO nanoseeds on the formation of ZnO nanorods from ε-Zn(OH)2 in NaOH solution at 80 °C was investigated, using ZnO nanoparticles with a diameter of 4–10 nm as the seeds. The experimental results indicated that the presence of ZnO nanoseeds promoted the rapid heterogeneous formation of ultrathin ZnO nanorods. Compared with the ZnO submicron rods with a diameter of 0.5–1.0 µm, the ultrathin ZnO nanorods with a diameter of 10–15 nm were found to be more sensitive for detecting NO2 at room temperature owing to their higher variation of channel conduction to the diameter.  相似文献   

3.
《Ceramics International》2022,48(5):6600-6607
Ti3C2Tx, as a novel two-dimensional material, displays promising prospects in NH3 detection at room temperature. However, the NH3 detection limit of pristine Ti3C2Tx is still a major research concern. Therefore, it is important to explore new Ti3C2Tx-based nanocomposites for better NH3-sensing performance. In the present experiment, Ti3C2Tx/In2O3 nanocomposites were successfully synthesized by ultrasonication and characterized by XRD, FESEM, TEM, XPS, and BET. The optimal Ti3C2Tx/In2O3-based sensor had a high response of 63.8% (30.4 times higher than that of pristine Ti3C2Tx) to 30 ppm NH3 at room temperature. In addition, the optimal Ti3C2Tx/In2O3-based sensor had stable repeatability, excellent selectivity, and long-term stability, while exhibiting excellent potential for NH3 detection at room temperature.  相似文献   

4.
In2O3 nanoparticles with uniform particle size (10-25 nm) were obtained using the facile precipitation strategy at room temperature with following calcined treatment. The gas-sensing performance of In2O3 nanoparticles with different calcined temperatures was investigated. The results demonstrated that the In2O3 nanoparticles calcined at 500°C exhibited highest sensing response (Ra/Rg = 68.1) to 10 ppm HCHO at 100°C with good selectivity, stability, reproducibility, and ultra-low limit of detection (1 ppm). The results of XPS, UV, and other characterizations indicated that In2O3-500 possessed the most absorbed oxygen species, the highest carrier mobility, and lowest band gap energies. Our work offers new insights into the development of sensing materials to the detection of volatile organic compounds (VOCs).  相似文献   

5.
Castoldi  L.  Nova  I.  Lietti  L.  Tronconi  E.  Forzatti  P. 《Topics in Catalysis》2007,42(1-4):189-193
The study of the gas-phase NO reduction by H2 and of the stability/reactivity of NO x stored over Pt–Ba/Al2O3 Lean NO x Trap systems allowed to propose the occurrence of a reduction process of the stored nitrates occurring via to a Pt-catalyzed surface reaction which does not involve, as a preliminary step, the thermal decomposition of the adsorbed NO x species.  相似文献   

6.
Highly active two-dimensional (2D) nanocomposites, integrating the unique merits of individual components and synergistic effects of composites, have been recently receiving attention for gas sensing. In this work, In2O3 nanocubes/Ti3C2Tx MXene nanocomposites were synthesized using In2O3 nanocubes and layered Ti3C2Tx MXene via a facile hydrothermal self-assembly method. Characterization results indicated that the In2O3 nanocubes with sizes approximately 20–130 nm in width were well dispersed on the surface of layered Ti3C2Tx MXene to form numerous heterostructure interfaces. Based on the synergistic effects of electronic properties and gas-adsorption capabilities, In2O3 nanocubes/Ti3C2Tx MXene nanocomposites exhibited high response (29.6%–5 ppm) and prominent selectivity to methanol at room temperature. Meanwhile, the low detection concentration could be reduced to ppm-level, the response/recovery times are shortened to 6.5/3.5 s, excellent linearity and outstanding repeatability. The strategy of compositing layered MXene with metal oxide semiconductor provides a novel pathway for the future development of room temperature gas sensors.  相似文献   

7.
以InCl3.4H2O和Cu(NO3)2.3H2O为原料,尿素为沉淀剂,采用水热法制备In2O3-CuO复合材料。通过微观结构表征和宏观气敏特性相关联,探究紫外光活化In2O3-CuO复合材料的气敏性能与传感机制。研究结果表明,In2O3-CuO复合材料在375 nm 紫外光照射室温(25℃)条件下对50 ppm甲醛气体的灵敏度为298,与纯In2O3(2.4)相比灵敏度提高124倍,气敏性能的巨大提升归因于In2O3与CuO形成的p-n异质结,协同光活化条件下异质结界面产生的光生电子-空穴与氧物种(O2和O2-)间建立了氧的光活化吸附-解吸循环,使得室温下材料的气体吸附-解吸过程和表面反应增强。为光敏材料的应用和室温气体传感材料的设计提供了新的策略。  相似文献   

8.
《Ceramics International》2022,48(12):16956-16966
The Ba1-xLaxTi0.9Sn0.1O3 ceramics (x = 0, 0.006, 0.007, 0.008) were prepared by the traditional solid-state reaction method. The influence of La3+ on the phase, dielectric properties, ferroelectric properties, and electrocaloric effect (ECE) was analyzed in detail. The results of refinement show that all ceramics are multiphase coexistence at room temperature, including the cubic phase, the tetragonal phase, and the orthogonal phase. With the increase of La3+, the polar phases decrease but the non-polar phase increases, which is the main reason for the decline in adiabatic temperature change (ΔT). The analysis of dielectric properties and ferroelectric properties demonstrate that the diffuse phase transition is strengthened by introducing La3+. It also means that polar nanoregions (PNRs) might be formed. Therefore, the temperature stability of the Ba1-xLaxTi0.9Sn0.1O3 ceramics in a wide temperature range near room temperature is improved. Simultaneously, the PNRs provide additional entropy to improve ECE. A higher ΔT = 0.88 K is obtained under 60 kV/cm for x = 0.007, which also possesses excellent temperature stability in the temperature range of 298 K–378 K. The doping of La3+ also improves the electric field threshold of the electrocaloric strength (ΔTmax/ΔE) and stabilizes the ΔTmax/ΔE under a higher electric field, which is conducive to improving ECE under a higher electric field and providing another possible solution for promoting the practical application of ECE.  相似文献   

9.
《Ceramics International》2023,49(18):30170-30177
Hydrothermally synthesized In2O3 nanocubes were sensitized with Au and gas sensing performance is analyzed. The Au sensitization was done using sputtering and gas sensing performance is studied as function of different sputtering time. The catalytic activity of Au particles on In2O3 films increases with the sputtering time but acquires saturation at high sputtering time. The Au sensitization with sputtering time of 5 s was found to show improved sensor response (Rg/Ra) of 8435 than the sensor response of 6876 for pure In2O3 film. The improved sensor response was attributed to the catalytic activity of Au particles on the In2O3 film surface. In addition, Au sensitized In2O3 also demonstrates the sensor response at 60 ppb.  相似文献   

10.
MnOx-Fe3O4 nanomaterials were fabricated by using the innovative scheme of pyrolyzing manganese-doped iron-based metal organic framework in inert atmosphere and exhibited extraordinary performance of NO reduction by CO (CO-SCR). Multi-technology characterizations were conducted to ascertain the properties of fabricated materials (e.g., TGA, XRD, SEM, FT-IR, XPS, BET, H2-TPR and O2-TPD). Moreover, the interaction between reactants and catalysts was ascertained by in situ FT-IR. Experimental results demonstrated that Mn was an ideal promoter for iron oxides, resulting in decrease of crystallite size, improve reducibility property, enhance the mobility and the amount of lattice O2- species, as well as strength the adsorption ability of active NO and CO to form multiple species (e.g., nitrate and carbonate). The unprecedented enhancement of CO-SCR activity over Mn-Fe nanomaterials follows the Eley-Rideal (E-R) and Langmuir-Hinshelwood (L-H) reaction pathway.  相似文献   

11.
A new 3D coordination polymer {[Gd2(bpdc)3(H2O)3]·H2O}n(1) has been isolated from the reaction of 2,2′-bipyridine-4,4′-dicarboxylic acid (H2bpdc) and Gd(III) salts under hydrothermal conditions. Single-crystal X-ray diffraction study shows that compound 1 is constructed from Gd2-based second building units (SBUs) [Gd2(bpdc)3(H2O)3] and displays a 3D (3,4,8)-connected net with (42·6)(32·42·52)(32·45·54·611·76) topology. A thermogravimetric analysis of 1 shows a high thermal stability. The magnetic behavior of 1 reveals a weak antiferromagnetic interaction between Gd(III) ions.  相似文献   

12.
研究了在室温条件下以硬脂酸为改性剂对纳米氧化铝进行表面改性的工艺.探讨了不同的改性剂、改性剂用量、改性溶剂的选择、改性时间和氯仿溶剂的回收再利用等条件对纳米氧化铝改性的影响,并对改性工艺进行优化.优化工艺条件为:氯仿作改性溶剂、硬脂酸作改性剂,改性剂用量为5%(质量分数)、改性时间为30 min.在该工艺条件下,改性后纳米氧化铝的活化度可达95%以上,其在液体石蜡中的沉降体积可以降到2.4 mL/g左右.改性后产品的红外光谱分析表明,在纳米氧化铝表面的硬酯酸已经得到有效改性.电子透射显微镜(TEM)的结果表明,改性后的纳米氧化铝在有机溶剂中的分散性得到提高.  相似文献   

13.
Bi2Zn2/3Nb4/3O7 thin films were deposited at room temperature on Pt/Ti/SiO2/Si(1 0 0) and polymer-based copper clad laminate (CCL) substrates by pulsed laser deposition. Bi2Zn2/3Nb4/3O7 thin films were deposited in situ with no intentional heating under an oxygen pressure of 4 Pa and then post-annealed at 150 °C for 20 min. It was found that the films are still amorphous in nature, which was confirmed by the XRD analysis. It has been shown that the surface roughness of the substrates has a significant influence on the electrical properties of the dielectric films, especially on the leakage current. Bi2Zn2/3Nb4/3O7 thin films deposited on Pt/Ti/SiO2/Si(1 0 0) substrates exhibit superior dielectric characteristics. The dielectric constant and loss tangent are 59.8 and 0.008 at 10 kHz, respectively. Leakage current density is 2.5 × 10?7 A/cm2 at an applied electric field of 400 kV/cm. Bi2Zn2/3Nb4/3O7 thin films deposited on CCL substrates exhibit the dielectric constant of 60 and loss tangent of 0.018, respectively. Leakage current density is less than 1 × 10?6 A/cm2 at 200 kV/cm.  相似文献   

14.
The NO x adsorption mechanism on Pt/BaO/Al2O3 catalysts was investigated by performing NO x storage/reduction cycles, NO2 adsorption and NO + O2 adsorption on 2%Pt/(x)BaO/Al2O3 (x = 2, 8, and 20 wt%) catalysts. NO x uptake profiles on 2%\Pt/20%BaO/Al2O3 at 523 K show complete uptake behavior for almost 5 min, and then the NO x level starts gradually increasing with time and it reaches 75% of the inlet NO x concentration after 30 min time-on-stream. Although this catalyst shows fairly high NO x conversion at 523 K, only ~2.4 wt% out of 20 wt% BaO is converted to Ba(NO3)2. Adsorption studies by using NO2 and NO + O2 suggest two different NO x adsorption mechanisms. The NO2 uptake profile on 2%Pt/20%BaO/Al2O3 shows the absence of a complete NO x uptake period at the beginning of adsorption and the overall NO x uptake is controlled by the gas–solid equilibrium between NO2 and BaO/Ba(NO3)2 phase. When we use NO + O2, complete initial NO x uptake occurs and the time it takes to convert ~4% of BaO to Ba(NO3)2 is independent of the NO concentration. These NO x uptake characteristics suggest that the NO + O2 reaction on the surface of Pt particles produces NO2 that is subsequently transferred to the neighboring BaO phase by spill over. At the beginning of the NO x uptake, this spill-over process is very fast and so it is able to provide complete NO x storage. However, the NO x uptake by this mechanism slows down as BaO in the vicinity of Pt particles are converted to Ba(NO3)2. The formation of Ba(NO3)2 around the Pt particles results in the development of a diffusion barrier for NO2, and increases the probability of NO2 desorption and consequently, the beginning of NO x slip. As NO x uptake by NO2 spill-over mechanism slows down due to the diffusion barrier formation, the rate and extent of NO2 uptake are determined by the diffusion rate of nitrate ions into the BaO bulk, which, in turn, is determined by the gas phase NO2 concentration.  相似文献   

15.
采用共沉淀法制备Si O2-Al2O3复合氧化物载体,研究制备过程中陈化时间、Si O2与Al2O3物质的量比、焙烧温度以及硅前驱体对载体物化性能的影响,采用N2物理吸附仪、激光粒度仪、X射线衍射、NO程序升温脱附和扫描电镜对样品进行表征。分别在800℃和1 000℃条件下对载体进行高温老化,对比老化前后载体性能。采用浸渍法负载载体质量分数0.3%的Pt,制得Pt负载型NO氧化催化剂,对催化剂活性进行评价。结果表明,硅铝物质的量比为20∶80,陈化12 h,以硅溶胶为硅前驱体,500℃焙烧得到的载体负载Pt后达到预期的NO氧化效果,可以作为NO氧化催化剂用载体。  相似文献   

16.
经过长期储存的Nd2O3能够吸收空气中的水分发生缓慢的反应生成氢氧化钕。通过TG和XRD分析证实样品中含有质量分数约66%的氢氧化钕,没有检测到碳酸钕或碱式碳酸钕。通过对不同温度下Nd2O3与水反应的结果考察,发现反应速度与温度有关,当温度超过30℃时,生成氢氧化钕的速度明显加快。通过焙烧的方式对已经变质的Nd2O3进行再生,发现当焙烧温度低于800℃时,有A型和C型2种晶型氧化钕,焙烧温度为800℃,只有A型氧化钕生成。上述结果表明Nd2O3在室温下与空气中的水反应并不迅速,而且很难吸收空气中的CO2。  相似文献   

17.
Improvement of the low-cost transition metal electrocatalyst used in sluggish oxygen evolution reaction is a significant but challenging problem. In this study, ultrafine Fe-modulated Ni nanoparticles embedded in a porous Ni-doped carbon matrix were produced by the pyrolysis of zirconium metal–organic–frameworks, in which 2,2′-bipyridine-5,5′-dicarboxylate operating as a ligand can coordinate with Ni2+ and Fe3+. This strategy allows formation of Fe-modulated Ni nanoparticles with a uniform dimension of about 2 nm which can be ascribed to the spatial blocking effect of ZrO2. This unique catalyst displays an efficient oxygen evolution reaction electrocatalytic activity with a low overpotential of 372 mV at 10 mA·cm–2 and a small Tafel slope of 84.4 mV·dec–1 in alkaline media. More importantly, it shows superior durability and structural stability after 43 h in a chronoamperometry test. Meanwhile, it shows excellent cycling stability during 4000 cyclic voltammetry cycles. This research offers a new insight into the construction of uniform nanoscale transition metals and their alloys as highly efficient and durable electrocatalysts.  相似文献   

18.
The NOx storage catalyst Pt/BaAl2O4-Al2O3 was prepared by a coprecipitation--impregnation method. For fresh sample, the barium mainly exists as the BaAl2O4 phase except for some BaCO3 phase. The BaAl2O4 phase is the primary NO x storage phase of the sample. EXAFS and TPD were used for investigating the mechanism of NO x storage. It is found that two kinds of Pt sites are likely to operate. Site 1 is responsible for NO chemisorption and site 2 for oxidizing NO to nitrates and nitrites. When NO adsorbs on the sample below 200 °C, it mainly chemisorbs in the form of molecular states. Such adsorption results in an increase of the coordination magnitude of Pt-O, and a decrease of that of Pt-Pt and Pt-Cl. The coordination distance of Pt-Pt, Pt-Cl and Pt-O also increases. When the adsorption occurs above 200 °C, NO can be easily oxidized by O2, and stored as nitrites or nitrates at the basic BaAl2O4. Site 2 is regenerated quickly. A high adsorption temperature is favorable for nitrate formation.  相似文献   

19.
纳米氧化铁红颜料的室温固相合成   总被引:3,自引:0,他引:3  
以FeSO4.7H2O和NH4HCO3为原料,在少量表面活性剂聚乙二醇(PEG)-400的存在下,先在室温下充分混合研磨进行固相反应,然后用水洗去反应混合物中的可溶性无机盐并烘干,即得氧化铁红的前驱体,前驱体再经热解即得氧化铁红产品。采用TG/DTA、IR、XRD和SEM对前驱体及其热解产品进行了表征。结果表明,前驱体的热解是经一步完成的,烘干后的前驱体碳酸亚铁已基本上分解成了氧化物;在550℃下热解前驱体2 h,得到了纯晶相的三方Fe2O3,其粒度约为43 nm。  相似文献   

20.
The rates and product selectivities of the C3H6-NO-O2 and NO-H2 reactions over a Pt/Al2O3 catalyst, and of the straight, NO decomposition reaction over the reduced catalyst have been compared at 240C. The rate of NO decomposition over the reduced catalyst is seven times greater than the rate of NO decomposition in the C3H6-NO-O2 reaction. This is consistent with a mechanism in which NO decomposition occurs on Pt sites reduced by the hydrocarbon, provided only that at steady state in the lean NO x reaction about 14% of the Pt sites are in the reduced form. However, the (extrapolated) rate of the NO-H2 reaction at 240C is about 104 times faster than the rate of the NO decomposition reaction thus raising the possibility that NO decomposition in the former reaction is assisted by Hads. It is suggested that adsorbate-assisted NO decomposition in the C3H6-NO-O2 reaction could be very important. This would mean that the proportion of reduced Pt sites required in the steady state would be extremely small. The NO decomposition and the NO-H2 reactions produce no N2O, unlike the C3H6-NO-O2 reaction, suggesting that adsorbed NO is completely dissociated in the first two cases, but only partially dissociated in the latter case. It is possible that some of the associatively adsorbed NO present during the C3H6-NO-O2 reaction may be adsorbed on oxidised Pt sites.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号