首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《Ceramics International》2022,48(21):31627-31635
High temperature SiHfBCN-based ceramic adhesives are fabricated by polymer derived ceramic route with SiHfBCN precursors, TiB2 and polysiloxane (PSO). The phase composition and microstructure were investigated by X-ray diffraction and scanning electron microscopy, respectively and the evolution of pores was analyzed by Micron X-ray 3D Imaging System and VG Studio MAX 3.0.2 software. After heat-treating at 80 °C and curing at 170 °C in air, the adhesion strength detected in air of SiHfBCN adhesives is 3.22 MPa at room temperature (RT) and can rise to 5.47 MPa at 1000 °C after pyrolysis at 1000 °C in air for 2 h with a universal testing machine. By modifying SiHfBCN with TiB2–PSO, the adhesion strength can be enhanced to 9.49 MPa at RT and 6.37 MPa at 1000 °C. The results indicate that the formation of SiO2–B2O3–TiO2 ternary glasses play an important role in improving the adhesion strength. The present study broaden the high temperature adhesive family suitable for large-scale complex ceramic components in harsh environments.  相似文献   

2.
An air stable high temperature adhesive synthesized via the polymer-derived-ceramic route had received increased attention in the last two decades. To improve the thermal stability and adhesion strength of a polysilazane (PSNB) adhesive, TiB2 was added as active filler to join SiC ceramic discs. The thermal stability, phase composition and microstructure were investigated by using TGA, XRD, FT-IR, BSE and SEM measurements. Effects of the pyrolysis temperature and active filler TiB2 on the microstructure and adhesion strength have been investigated. After curing and heat-treating at 120?°C and 1000?°C in air for 2?h, respectively, the adhesion strength of the modified adhesive reached up to 10.07?MPa (3 times higher than that of pure PSNB) at room temperature, and, more importantly, retained a strength of 8.0?MPa at 800?°C in air. It should be noted that the formation of a glass comprised of SiO2-B2O3-TiO2 and the emergence of the hexagonal and granular TiB2 in the adhesive layer are mainly responsible for the enhanced high temperature strength.  相似文献   

3.
The interfacial microstructure and mechanical properties of B4C-SiC-TiB2 composite joints diffusion bonded with Ti foil interlayer were investigated. The joints were diffusion bonded in the temperature range of 800–1200?°C with 50?MPa by spark plasma sintering. The results revealed that robust joint could be successfully obtained due to the interface reaction. B4C reacted with Ti to form nanocrystalline TiB2 and TiC at the interface at 800–1000?°C. Both the reactions between SiC and Ti and between TiB2 and Ti were not observed during joining. A full ceramic joint consisted of micron- and submicron-sized TiB2 and TiC, accompanied with the formation of micro-crack, was achieved for the joint bonded at 1200?°C. Joint strength was evaluated and the maximum shear strength (145?±?14.1?MPa) was obtained for the joint bonded at 900?°C. Vickers hardness of interlayer increased with increasing the joining temperature.  相似文献   

4.
From the perspective of high temperature structural applications, it is important to evaluate temperature dependent mechanical properties of titanium diboride (TiB2) ceramics. The present study reports the effect of TiSi2 content (up to 10 wt.%) and temperature on hardness and strength of TiB2. The hardness properties were measured from room temperature (RT)—900 °C in vacuum; the four-point flexural strength properties were evaluated at selected temperatures in air up to 1000 °C. An attempt has been made to discuss the difference in hardness and strength properties with sinter-aid amount and microstructure. Our experimental results clearly indicated that the addition of 2.5 wt.% TiSi2 to TiB2 resulted almost full densification at a lower hot pressing temperature of 1650 °C without compromising on the high temperature strength and hardness properties. The hot pressed TiB2–2.5 wt.% TiSi2 ceramic could retain moderate strength of more than 400 MPa and hardness of 9 GPa at 1000 °C and 900 °C, respectively.  相似文献   

5.
Geopolymer composites reinforced with refractory, chopped basalt fibers, and low melting glass were fabricated and heat treated at higher temperatures. K2O·Al2O3·4SiO2·11H2O was the stoichiometric composition of the potassium-based geopolymer which was produced from water glass (fumed silica, deionized water, potassium hydroxide), and metakaolin. Addition of low melting glass (Tm ~815°C) increased the flexure strength of the composites to ~5 MPa after heat treatment above 1000°C to 1200°C. A Weibull statistical analysis was performed exhibiting how the amorphous self-healing and self-glazing effect of the glass frit significantly improved the flexure strength of the geopolymer and ceramic composites after exposure for 1 hour to high temperatures. At 950-1000°C, the K-based geopolymer converted to primarily a crystalline leucite ceramic, but the basalt fiber remained intact, and the melted glass frit flowed out of the surface cracks and sealed them. 1150℃ was determined to be the optimum heat treatment temperature, as at ≤1200°C, the basalt fibers melt and the strength of the reinforcement in the composites is significantly reduced. The amorphous self-healing and amorphous self-glazing effects of the glass frit significantly improved the room temperature flexure strength of the heat-treated geopolymer and ceramic composites.  相似文献   

6.
Si3N4 ceramic was successfully joined to itself with in-situ formed Yb-Si-Al oxynitride glass interlayer. The joints were composed of three parts: (I) Si3N4 matrix, (II) oxynitride glass interlayer in which hexagonal or fine elongated β-sialon grains and a few ball-like β-Si3N4 grains exist, and (III) diffusion zone in Si3N4 matrix containing a thin dark layer and a ~ 25?µm thick bright layer. The seam owned similar microstructure to matrix and was inosculated with the matrix as a whole. The strength of the joint tended to increase with the increase of bonding temperature and reached the value of 225?MPa, when the joints were prepared at 1600?°C for 30?min under a pressure of 1.5?MPa. The high-temperature strength remained 94.7% and 75.2% of R.T. strength when the joints were tested at 1000?°C and 1200?°C, respectively. It may be contributed to the high softening temperature of the Yb-Si-Al oxynitride glass phase formed in the seam. Even suffered to the air exposure for 10?h at 1200?°C, the residual strength of the joints was still 143?MPa, attributed to the existence of YbAG phase.  相似文献   

7.
TiN–TiB2 ceramic was prepared by the reactive hot-pressing method using titanium and BN powders as raw materials. The friction and wear properties of TiN–TiB2 ceramic were evaluated in sliding against alumina ball from room temperature to 700 °C in air. The TiN–TiB2 ceramic has a relative density of 98.6%, a flexural strength of 731.9 MPa and a fracture toughness of 8.5 MPa m1/2 at room temperature. The TiN–TiB2 ceramic exhibits a distinct decrease in friction coefficient at 700 °C as contrasted with the friction data obtained at room temperature and 400 °C. Wear mechanisms of TiN–TiB2 ceramic depend mainly upon testing temperature at identical applied loads. Lubricious oxidized products caused by thermal oxidation provide excellent lubrication effects and greatly reduce the friction coefficient of TiN–TiB2 ceramic at 700 °C. However, abrasive wear and tribo-oxidation are the dominant wear mechanisms of TiN–TiB2 ceramic at 400 °C. Mechanical polishing effect and removal of micro-fractured grains play important roles during room-temperature wear tests.  相似文献   

8.
Geopolymer composites containing refractory, chopped basalt fibers and low-melting glass were made and systematically heat-treated at higher temperatures. Potassium-based geopolymer of stoichiometric composition K2O·Al2O3·4SiO2·11H2O was produced by high shear mixing from fumed silica, deionized water, potassium hydroxide, (i.e., water glass) and metakaolin. With the addition of low-melting glass (Tm ~815°C) the flexure strengths of the composites increased to ~6 MPa after heat treatment above 900°C to 1100°C. A Weibull statistical analysis was performed showing how the amorphous self-healing effect of the glass frit significantly improved the flexure strength of the geopolymer and ceramic composites after high-temperature exposure. At temperatures up to 900°C, the geopolymer-basalt composite remained amorphous and the low-melting glass frit flowed into the dehydration cracks in the geopolymer matrix. This type of composite could be described as amorphous self-healed geopolymer (ASH-G). At ~1000°C, the geopolymer converted to primarily a crystalline leucite ceramic, but the basalt fiber remained intact, and the melted glass frit flowed and sealed the cracks developed at that temperature. This type of composite could then be described as amorphous self-healed ceramic (ASH-C). A temperature of 1150°C was determined to be optimum as at 1200°C the basalt fibers melted and the strength of the reinforcement was lost in the composites. The amorphous self-healing effect of the glass frit significantly improved the room temperature flexure strength of the heat-treated geopolymer-based composites.  相似文献   

9.
Bulk titanium diboride–niobium diboride ceramic composites were consolidated by spark plasma sintering (SPS) at 1950°C. SPS resulted in dense specimens with a density exceeding 98% of the theoretical density and a multimodal grain size ranging from 1 to 10 μm. During the SPS consolidation, the pressure was applied and released at 1950 and 1250°C, respectively. This allowed obtaining a two-phase composite consisting of TiB2 and NbB2. For these ceramics composites, we evaluated the flexural strength and fracture toughness and room and elevated temperatures. Room-temperature strength of thus produced bulks was between 300 and 330 MPa, at 1200°C or 1600°C an increase in strength up to 400 MPa was observed. Microstructure after flexure at elevated temperatures revealed the appearance of the needle-shape subgrains of NbB2, an evidence for ongoing plastic deformation. TiB2–NbB2 composites had elastic loading stress curves at 1600°C, and at 1800°C fractured in the plastic manner, and strength was ranged from 300 to 450 MPa. These data were compared with a specimen where a (Ti,Nb)B2 solid solution was formed during SPS to explain the behavior of TiB2–NbB2 ceramic composites at elevated temperatures.  相似文献   

10.
Spark plasma sintering of TiB2–boron ceramics using commercially available raw powders is reported. The B4C phase developed during reaction-driven consolidation at 1900 °C. The newly formed grains were located at the grain junctions and the triple point of TiB2 grains, forming a covalent and stiff skeleton of B4C. The flexural strength of the TiB2–10 wt.% boron ceramic composites reached 910 MPa at room temperature and 1105 MPa at 1600 °С. Which is the highest strength reported for non-oxide ceramics at 1600 °C. This was followed by a rapid decrease at 1800 °C to 480–620 MPa, which was confirmed by increased number of cavitated titanium diboride grains observed after flexural strength tests.  相似文献   

11.
We developed a new Li2O–Al2O3–SiO2 (LAS) ultra‐low expansion glass‐ceramic by nonisothermal sintering with concurrent crystallization. The optimum sintering conditions were 30°C/min with a maximum temperature of 1000°C. The best sintered material reached 98% of the theoretical density of the parent glass and has an extremely low linear thermal expansion coefficient (0.02 × 10?6/°C) in the temperature range of 40°C–500°C, which is even lower than that of the commercial glass‐ceramic Ceran® that is produced by the traditional ceramization method. The sintered glass‐ceramic presents a four‐point bending strength of 92 ± 15 MPa, which is similar to that of Ceran® (98 ± 6 MPa), in spite of the 2% porosity. It is white opaque and does not have significant infrared transmission. The maximum use temperature is 600°C. It could thus be used on modern inductively heated cooktops.  相似文献   

12.
In this study, the impact of TiN as a sintering aid on the relative density and microstructure of TiB2 ceramic was investigated. Monolithic TiB2 and TiB2 doped with 5?wt% TiN were sintered at 1900?°C for 7?min dwell time under the pressure of 40?MPa by spark plasma. The addition of TiN affected the microstructure of TiB2-based sample considerably depicting the finer grains in the as-sintered ceramic. X-ray diffraction evaluation indicated that no interaction occurred between the initial materials. However, detail investigation by the map analysis and energy dispersive spectroscopy results revealed the formation of in-situ nano-sized hBN secondary phase in the TiN-doped TiB2. In addition, TiN played a remarkable role on increasing the relative density of TiN-doped TiB2 ceramic producing a nearly fully dense ceramic with relative density of 99.9% in comparison with the monolithic ceramic having 96.7% relative density.  相似文献   

13.
The use of ultra-high temperature ceramics (UHTCs) requires effective methods to overcome the problems associated with manufacturing parts with complex shapes. In this study, a titanium diboride (TiB2)-based ultra-high-temperature ceramic, TiB2-20 vol.%TiC-20 vol.%SiC (TTS), was joined to refractory metal tantalum (Ta) using titanium (Ti) interlayer. The interface microstructure and mechanical properties of joints obtained at different bonding temperatures were investigated. The bonding mechanism of the joint was discussed based on TEM analysis and theoretical calculation. The results revealed that a (Ti, Ta)B + TiC + Ti5Si3 reaction layer formed adjacent to the TTS ceramic substrate while a β-(Ta, Ti)+β-(Ti, Ta)+α-Ti layer formed adjacent to the Ta substrate. The α-Ti was gradually replaced by β-(Ta, Ti) and β-(Ti, Ta), and the reaction layer of the ceramic side became thicker as the bonding temperature increased. The maximum joint shear strength of room temperature was 176 MPa when the joint was bonded at 1200 °C for 60 min under 20 MPa, and cracks propagated in the ceramic. The shear strength of the joint tested at 800 °C was 86 MPa, and fracture occurred at the β-(Ti, Ta).  相似文献   

14.
《Ceramics International》2022,48(16):23151-23158
SiC composite ceramics have good mechanical properties. In this study, the effect of temperature on the microstructure and mechanical properties of SiC–TiB2 composite ceramics by solid-phase spark plasma sintering (SPS) was investigated. SiC–TiB2 composite ceramics were prepared by SPS method with graphite powder as sintering additive and kept at 1700 °C, 1750 °C, 1800 °C and 50 MPa for 10min.The experimental results show that the proper TiB2 addition can obviously increase the mechanical properties of SiC–TiB2 composite ceramics. Higher sintering temperature results in the aggregation and growth of second-phase TiB2 grains, which decreases the mechanical properties of SiC–TiB2 composite ceramics. Good mechanical properties were obtained at 1750 °C, with a density of 97.3%, Vickers hardness of 26.68 GPa, bending strength of 380 MPa and fracture toughness of 5.16 MPa m1/2.  相似文献   

15.
It is necessary to give self-healing function to ceramic materials because of their notch sensitivity. In the past, studies on self-healing ceramics have mainly focused on the high-temperature stage, and less research has been done below 1000°C. In this study, SiC/Al2O3/TiB2 ceramic composites were prepared by spark plasma discharge sintering, and cracks were introduced on the surface of the polished specimens. Crack healing at 600°C–800°C was investigated, and the recovery of macroscopic bending strength and the change of microscopic crack morphology after heat treatment were used to evaluate the crack-healing effect. It was found that the surface cracks of the material were completely filled and healed by oxidation products after heat treatment at 700°C for 60 min, and the highest healing efficiency exceeded 95% for both specimens with different crack lengths, and the main mechanism of crack by Si-Al-B-Na-Ca-O type glass produced by the reaction of TiB2 and a small amount of SiC with oxygen to produce oxides and glass powder. Good healing effect and fast healing speed effectively improve the service life and reliability of ceramic materials, which has very far-reaching significance for the practical application with ceramic materials.  相似文献   

16.
Ceramizable heat-resistant organic adhesive (CHA) was prepared by using preceramic polymer polysiloxane as matrix, TiB2 ceramic powder and low melting point glass powder as additives. The curing mechanism, thermal stability properties, phase composition after pyrolysis, structural evolution of bonding layer and bonding mechanism of the adhesive were investigated by FTIR, TGA-DSC, XRD, SEM, FESEM and bonding strength tests. Results of bonding tests showed the maximum shear strength of the joints was 21 MPa when heat treatment at 1200 °C for 2 h in air. Polysiloxane resin acted as crosslinking adhesive at low temperatures and tended to convert to ceramic bonding layer at high temperatures, resulting from ceramization reaction with active fillers. The formation and growth of ceramic phase after heat treatment enhanced the thermal stability and bonding performance of the adhesive at high temperature.  相似文献   

17.
B4C-TiB2 composites were contaminated with WC to study the effect on densification, microstructure and properties. WC was introduced through a mild or a high energy milling with WC-6?wt%Co spheres or directly as sintering aid to 50?vol% B4C / 50?vol%TiB2 mixtures. High energy milling was very effective in improving the densification thanks to the synergistic action of WC impurities, acting as sintering aid, and size reduction of the starting TiB2-B4C powders. As a result, the sintering temperature necessary for full densification decreased to 1860?°C and both strength and hardness benefited from the microstructure refinement, 860?±?40 MPa and 28.5?±?1.4?GPa respectively. High energy milling was then adopted for producing 75?vol% B4C/25?vol% TiB2 and 25?vol% B4C/ 75vol%TiB2 mixtures. The B4C-rich composition showed the highest hardness, 32.2?±?1.8?GPa, whilst the TiB2-rich composition showed the highest value of toughness, 5.1?±?0.1?MPa?m0.5.  相似文献   

18.
Structure and mechanical characteristics of dense ceramic composites synthesised by reactive hot pressing of TiC–B4C powder mixtures at 1800–1950°C under 30?MPa were investigated by X-ray diffraction, scanning electron microscopy and energy dispersive X-ray spectroscopy (SEM and EDX). The results show that during hot pressing solid-phase chemical reaction 2TiC?+?B4C?=?2TiB2?+?3C has occurred with final products like TiB2–TiC–C, TiB2–C or TiB2–B4C–C hetero-modulus composite formation with around one micrometer size carbon precipitates. The fracture toughness depends on the amount of graphite precipitation and has a distinct maximum K1C?=?10?MPa?m1/2 at nearly 7?vol.-% of carbon precipitate. The fracture toughness behaviour is explained by the developed model of crack propagation. Within the model, it is shown that pores (voids) and low-modulus carbon inclusions blunt the cracks and can increase ceramic toughness in some cases.  相似文献   

19.
A borosilicate sol–gel solution is synthesized using a mixture of methyltriethoxysilane, dimethyldiethoxysilane, and boric acid. SiBOC gel fibers are produced from the as‐synthesized sol–gel solution using a spinning apparatus. Subsequently, SiBOC glass fibers are prepared through pyrolysis under argon atmosphere at 1000°C and 1200°C. Mechanical properties of the SiBOC glass fibers are studied by measuring the tensile strength and the elastic modulus. The results show a high tensile strength ?1300 and 1058 MPa, and a high Young modulus ?79 and 95.5 GPa, for the fibers prepared at 1000°C and 1200°C, respectively. Furthermore, alkali resistance of the SiBOC fibers is investigated by measuring the tensile strength after soaking them for 20 h in NaOH and Ca(OH)2 solutions at 100°C. For comparison, the same measurements are performed on commercial AR and E glass fibers. The SiBOC fibers show excellent alkaline resistance and perform better than commercial AR fibers. Indeed, SiBOC fibers retain 80%–90% of the initial strength after Ca(OH)2 attack.  相似文献   

20.
TiB2-Metal composite coatings with excellent oxidation resistance become ideal candidates using at high temperature ranging from 600 to 1000?°C. In order to maintain both the superior mechanical properties and oxidation resistance in severe working conditions, the nanostructured NiCrCoAlY-TiB2 coating was fabricated by the activated combustion high velocity air-fuel spraying (AC-HVAF) with the composite powders prepared by ball milling and plasma spheroidization. X-ray diffraction (XRD), scanning electron microscopy (SEM) and transmission electron microscopy (TEM) were used to observe the phase constituents and microstructure. It was found that the coating with nanostructured TiB2 particles uniformly distributed in the NiCrCoAlY matrix has the same structure as the composite powders. The coating shows excellent mechanical properties, such as high microhardness (991.43 HV0.3), good fracture toughness (4.12?MPa?m?1/2) and large bonding strength (75.43?MPa), and excellent oxidation resistance with low weight gain (1.56?×?10?6 mg2 cm?4 s?1). The cyclic oxidation behavior is in accordance with the parabolic law.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号