首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Controlling the arrangement and interface of nanoparticles is essential to achieve good transfer of charge, heat, or mechanical load. This is particularly challenging in systems requiring hybrid nanoparticle mixtures such as combinations of organic and inorganic materials. This work presents a process to coat vertically aligned carbon nanotube (CNT) forests with metal oxide nanoparticles using microwave‐assisted hydrothermal synthesis. Hydrothermal processes normally damage delicate CNT forests, which is addressed here by a combination of lithographic patterning, transfer printing, and reduction of the synthesis time. This process is applied for the fabrication of structured Li‐ion battery (LIB) electrodes where the aligned CNTs provide a straight electron transport path through the electrode and the hydrothermal coating process is used to coat the CNTs with conversion anode materials for LIBs. These nanoparticles are anchored on the surface of the CNTs and batteries fabricated following this process show a fourfold longer cyclability. Finally, this process is used to create thick electrodes (350 µm) with a gravimetric capacity of over 900 mAh g?1.  相似文献   

2.
Experimental demonstration of wafer-scale growth of well-aligned, dense, single-walled carbon nanotubes on 4" ST-cut quartz wafers is presented. We developed a new carbon nanotube (CNT) wafer-scale growth process. This process allows quartz wafers to be heated to the CNT growth temperature of 865degC through the alpha-beta phase transformation temperature of quartz (573degC) without wafer fracture. We also demonstrate wafer-scale CNT transfer to transfer these aligned CNTs from quartz wafers to silicon wafers. The CNT transfer process preserves CNT density and alignment. Carbon nanotube FETs fabricated using these transferred CNTs exhibit high yield. Wafer-scale growth and wafer-scale transfer of aligned CNTs enable carbon nanotube very large-scale integration circuits and their large-scale integration with silicon CMOS.  相似文献   

3.
High‐throughput fabrication of microstructured surfaces with multi‐directional, re‐entrant, or otherwise curved features is becoming increasingly important for applications such as phase change heat transfer, adhesive gripping, and control of electromagnetic waves. Toward this goal, curved microstructures of aligned carbon nanotubes (CNTs) can be fabricated by engineered variation of the CNT growth rate within each microstructure, for example by patterning of the CNT growth catalyst partially upon a layer which retards the CNT growth rate. This study develops a finite‐element simulation framework for predictive synthesis of complex CNT microarchitectures by this strain‐engineered growth process. The simulation is informed by parametric measurements of the CNT growth kinetics, and the anisotropic mechanical properties of the CNTs, and predicts the shape of CNT microstructures with impressive fidelity. Moreover, the simulation calculates the internal stress distribution that results from extreme deformation of the CNT structures during growth, and shows that delamination of the interface between the differentially growing segments occurs at a critical shear stress. Guided by these insights, experiments are performed to study the time‐ and geometry‐depended stress development, and it is demonstrated that corrugating the interface between the segments of each microstructure mitigates the interface failure. This study presents a methodology for 3D microstructure design based on “pixels” that prescribe directionality to the resulting microstructure, and show that this framework enables the predictive synthesis of more complex architectures including twisted and truss‐like forms.  相似文献   

4.
The main challenge for application of solution‐derived carbon nanotubes (CNTs) in high performance field‐effect transistor (FET) is how to align CNTs into an array with high density and full surface coverage. A directional shrinking transfer method is developed to realize high density aligned array based on randomly orientated CNT network film. Through transferring a solution‐derived CNT network film onto a stretched retractable film followed by a shrinking process, alignment degree and density of CNT film increase with the shrinking multiple. The quadruply shrunk CNT films present well alignment, which is identified by the polarized Raman spectroscopy and electrical transport measurements. Based on the high quality and high density aligned CNT array, the fabricated FETs with channel length of 300 nm present ultrahigh performance including on‐state current Ion of 290 µA µm?1 (Vds = ?1.5 V and Vgs = ?2 V) and peak transconductance gm of 150 µS µm?1, which are, respectively, among the highest corresponding values in the reported CNT array FETs. High quality and high semiconducting purity CNT arrays with high density and full coverage obtained through this method promote the development of high performance CNT‐based electronics.  相似文献   

5.
The widespread potential application of vertically aligned carbon nanotube (CNT) forests have stimulated recent work on large‐area chemical vapor deposition growth methods, but improved control of the catalyst particles is needed to overcome limitations to the monodispersity and packing density of the CNTs. In particular, traditional thin‐film deposition methods are not ideal due to their vacuum requirements, and due to limitations in particle uniformity and density imposed by the thin‐film dewetting process. Here, a continuous‐feed convective self‐assembly process for manufacturing uniform mono‐ and multi‐layers of catalyst particles for CNT growth is presented. Particles are deposited from a solution of commercially available iron oxide nanoparticles, by pinning the meniscus between a blade edge and the substrate. The substrate is translated at constant velocity under the blade so the meniscus and contact angle remain fixed as the particles are deposited on the substrate. Based on design of the particle solution and tuning of the assembly parameters, a priori control of CNT diameter and packing density is demonstrated. Quantitative relationships are established between the catalyst size and density, and the CNT morphology and density. The roll‐to‐roll compatibility of this method, along with initial results achieved on copper foils, suggest promise for scale‐up of CNT forest manufacturing at commercially relevant throughput.  相似文献   

6.
Because of the outstanding mechanical and electrical properties of carbon nanotubes (CNTs), a CNT‐based torsion pendulum is demonstrated to show great potential in nano‐electromechanical systems. It is also expected to achieve various manipulations for further characterization and increase device sensitivity using ultrlong CNTs and macroscale moving parts. However, the reported top‐down method limits the CNT performance and device size by introducing inevitable contamination and destruction, which greatly hinders the development of single‐molecule devices. Here, a bottom‐up method is introduced to fabricate heterostructures of anthracene flakes (AFs) and suspended CNTs, providing a nondamaging CNT mechanical measurement before further applications, especially for the twisting behavior, and providing a controllable and clean transfer method to fabricate CNT‐based electrical devices under ambient conditions. Based on the unique geometry of CNT/AF heterostructures, various complex manipulations of single‐CNT devices are conducted to investigate CNT mechanical properties and prompt novel applications of similar structures in nanotechnology. The AF‐decorated CNTs show high Young's modulus (≈1 TPa) and tensile strength (≈100 GPa), and can be considered as the finest and strongest torsional springs. CNT‐based torsion balance enables to measure fN‐level forces and the torsional spring constant is two orders of magnitude lower than previously reported values.  相似文献   

7.
Alignment or patterning of carbon nanotubes (CNTs) is particularly important for fabricating functional devices such as field emitters, nanophotonics, nanoelectronics, and ultrahydrophobic materials. This work briefly reviews recent progress on the synthesis of two‐dimensional CNT patterns, and then particularly concentrates on describing the pillar‐shaped fabrication and very interesting patterns of three‐dimensionally aligned CNTs formed by pyrolysis of iron(II ) phthalocyanine. The possible formation mechanism of the structures is discussed. The Figure shows the pillar‐shaped alignment of three‐dimensional CNTs.  相似文献   

8.
A carbon nanotube (CNT) fiber is formed by assembling millions of individual tubes. The assembly feature provides the fiber with rich interface structures and thus various ways of energy dissipation, as reflected by the nonzero loss tangent (>0.028–0.045) at low vibration frequencies. A fiber containing entangled CNTs possesses higher loss tangents than a fiber spun from aligned CNTs. Liquid densification and polymer infiltration, the two common ways to increase the interfacial friction and thus the fiber's tensile strength and modulus, are found to efficiently reduce the damping coefficient. This is because the sliding tendency between CNT bundles can also be well suppressed by a high packing density and the formation of covalent polymer cross‐links within the fiber. The CNT/bismaleimide composite fiber exhibits the smallest loss tangent, nearly the same as that of carbon fibers. At a higher level of the assembly structure, namely a multi‐ply CNT yarn, the interfiber friction and sliding tendency obviously influence the yarn's damping performance, and the loss tangent can be tuned within a wide range, similar to carbon fibers, nylon yarns, or cotton yarns. The wide‐range tunable dynamic properties allow new applications ranging from high quality factor materials to dissipative systems.  相似文献   

9.
Carbon nanotube (CNT)/semiconducting oxide hybrids are an ideal architecture for light‐harvesting devices, in which the CNTs are expected to not only act as a scaffold but also provide fast transport paths for photogenerated charges in the oxide. However, the current potential of CNTs for charge transport is largely suppressed due to the nanotubes not being interconnected but isolated by the low conductive oxide coatings. Herein, a flexible and conductive CNT/TiO2 core/shell heterostructure film is reported, with aligned and interconnected CNTs wrapped in a continuous TiO2 coating. Without using additional transparent conducting oxide (TCO) substrates, this unique feature of the film boosts the incident photon‐to‐electron conversion efficiency to 32%, outperforming TiO2 nanoparticle electrodes fabricated on TCO substrates. Moreover, the film shows high structural stability and can generate a stable photocurrent even after being bent hundreds of times.  相似文献   

10.
Golden bristlegrass‐like unique nanostructures comprising reduced graphene oxide (rGO) matrixed nanofibers entangled with bamboo‐like N‐doped carbon nanotubes (CNTs) containing CoSe2 nanocrystals at each node (denoted as N‐CNT/rGO/CoSe2 NF) are designed as anodes for high‐rate sodium‐ion batteries (SIBs). Bamboo‐like N‐doped CNTs (N‐CNTs) are successfully generated on the rGO matrixed nanofiber surface, between rGO sheets and mesopores, and interconnected chemically with homogeneously distributed rGO sheets. The defects in the N‐CNTs formed by a simple etching process allow the complete phase conversion of Co into CoSe2 through the efficient penetration of H2Se gas inside the CNT walls. The N‐CNTs bridge the vertical defects for electron transfer in the rGO sheet layers and increase the distance between the rGO sheets during cycles. The discharge capacity of N‐CNT/rGO/CoSe2 NF after the 10 000th cycle at an extremely high current density of 10 A g?1 is 264 mA h g?1, and the capacity retention measured at the 100th cycle is 89%. N‐CNT/rGO/CoSe2 NF has final discharge capacities of 395, 363, 328, 304, 283, 263, 246, 223, 197, 171, and 151 mA h g?1 at current densities of 1, 2, 4, 6, 8, 10, 12, 14, 16, 18, and 20 A g?1, respectively.  相似文献   

11.
Paintable carbon electrode‐based perovskite solar cells (PSCs) are of particular interest due to their material and fabrication process costs, as well as their moisture stability. However, printing the carbon paste on the perovskite layer limits the quality of the interface between the perovskite layer and carbon electrode. Herein, an attempt to enhance the performance of the paintable carbon‐based PSCs is made using a modified solvent dripping method that involves dripping of the carbon nanotubes (CNTs), which is dispersed in chlorobenzene solution. This method allows CNTs to penetrate into both the perovskite film and carbon electrode, facilitating fast hole transport between the two layers. Furthermore, this method is results in increased open circuit voltage (Voc) and fill factor (FF), providing better contact at the perovskite/carbon interfaces. The best devices made with CNT dripping show 13.57% power conversion efficiency and hysteresis‐free performance.  相似文献   

12.
Millimeter‐long conducting fibers can be fabricated from carbon nanomaterials via a simple method involving the release of a prestrained protein layer. This study shows how a self‐rolling process initiated by polymerization of a micropatterned layer of fibronectin (FN) results in the production of carbon nanomaterial‐based microtubular fibers. The process begins with deposition of carbon nanotube (CNT) or graphene oxide (GO) particles on the FN layer. Before polymerization, particles are discrete and nonconducting, but after polymerization the carbon materials become entangled to form an interconnected conducting network clad by FN. Selective removal of FN using high‐temperature combustion yields freestanding CNT or reduced GO microtubular fibers. The properties of these fibers are characterized using atomic force microscopy and Raman spectroscopy. The data suggest that this method may provide a ready route to rapid design and fabrication of aligned biohybrid nanomaterials potentially useful for future electronic applications.  相似文献   

13.
Plasma enhanced chemical vapor deposition (PECVD), which enables growth of vertically aligned carbon nanotubes (CNTs) directly onto a solid substrate, is considered to be a suitable method for preparing CNTs for nanoelectronics applications such as electron sources for field emission displays (FEDs). For these purposes, establishment of an efficient CNT growth process has been required. We have examined growth characteristics of CNTs using a radio frequency PECVD (RF-PECVD) method with the intention to develop a high efficiency process for CNT growth at a low enough temperature suitable for nanoelectronics applications. Here we report an effect of pretreatment of the catalyst thin film that plays an important role in CNT growth using RF-PECVD. Results of this study show that uniform formation of fine catalyst nanoparticles on the substrate is important for the efficient CNT growth.  相似文献   

14.
Kim H  Kim KS  Kang J  Park YC  Chun KY  Boo JH  Kim YJ  Hong BH  Choi JB 《Nanotechnology》2011,22(9):095303
We demonstrated that the structural formation of vertically aligned carbon nanotube (CNT) forests is primarily affected by the geometry-related gas flow, leading to the change of growth directions during the chemical vapor deposition (CVD) process. By varying the growing time, flow rate, and direction of the carrier gas, the structures and the formation mechanisms of the vertically aligned CNT forests were carefully investigated. The growth directions of CNTs are found to be highly dependent on the nonlinear local gas flows induced by microchannels. The angle of growth significantly changes with increasing gas flows perpendicular to the microchannel, while the parallel gas flow shows almost no effect. A computational fluid dynamics (CFD) model was employed to explain the flow-dependent growth of CNT forests, revealing that the variation of the local pressure induced by microchannels is an important parameter determining the directionality of the CNT growth. We expect that the present method and analyses would provide useful information to control the micro- and macrostructures of vertically aligned CNTs for various structural/electrical applications.  相似文献   

15.
Here we report a simple preparation of composite nanopowders made of hydroxyapatite (HA) and carbon nanotube (CNT). In particular, CNTs were ionically modified to dissolve homogeneously in a series of organic solvents, including tetrahydrofuran and ethanol. The addition of HA nanopowders within the CNTs solution resulted in rapid precipitation of the composite HA-CNTs nanopowders. High resolution electron image revealed individual CNTs were evenly distributed within the cluster of HA nanoparticulates. A maximal concentration of CNTs to be organized within the HA nanopowder was highly dependent on the physicochemical characteristics of HA powders. A pilot biological assessment of the composite powders demonstrated favorable adhesion and growth of tissue cells. The developed HA-CNTs composite nanopowders may be potentially useful as an initial powder source for HA-CNT nanocomposites or coatings in biomedical applications.  相似文献   

16.
Although carbon nanotubes (CNTs) are remarkable materials with many exceptional characteristics, their poor chemical functionality limits their potential applications. Herein, a strategy is proposed for functionalizing CNTs, which can be achieved with any functional group (FG) without degrading their intrinsic structure by using a deoxyribonucleic acid (DNA)‐binding peptide (DBP) anchor. By employing a DBP tagged with a certain FG, such as thiol, biotin, and carboxyl acid, it is possible to introduce any FG with a controlled density on DNA‐wrapped CNTs. Additionally, different types of FGs can be introduced on CNTs simultaneously, using DBPs tagged with different FGs. This method can be used to prepare CNT nanocomposites containing different types of nanoparticles (NPs), such as Au NPs, magnetic NPs, and quantum dots. The CNT nanocomposites decorated with these NPs can be used as reusable catalase‐like nanocomposites with exceptional catalytic activities, owing to the synergistic effects of all the components. Additionally, the unique DBP–DNA interaction allows the on‐demand detachment of the NPs attached to the CNT surface; further, it facilitates a CNT chirality‐specific NP attachment and separation using the sequence‐specific programmable characteristics of oligonucleotides. The proposed method provides a novel chemistry platform for constructing new functional CNTs suitable for diverse applications.  相似文献   

17.
The present work studied the combination effect of physical drying with chemical modification of carbon nanotubes (CNTs) on some through-thickness properties of carbon fiber/epoxy composites. Different drying methods of heat drying and freeze drying were utilized to affect CNT organization form in carbon fiber/CNTs preforms and composites: The adoption of heat-drying method made CNTs more inclined to form aggregates accompanied with randomly scattered CNTs, while continuous CNT networks could always be assembled when freeze drying method was employed. The formation mechanism of such CNT networks was discussed, and could be described as “freeze drying within confined space.” Chemical characteristic of CNTs was controlled by choosing different solutions of non-functionalized CNTs (NOCNTs) or hydroxyl-modified CNTs (OHCNTs). As a consequence, CNT networks modified composites, especially that with OHCNTs formed networks, displayed significantly better electrical performance than composites with CNT aggregates and scattered CNTs; NOCNT networks and scattered OHCNTs made the corresponding composites possess higher interlaminar shear strength (ILSS) value, whereas OHCNT networks impaired ILSS while enhancing flexural strength and modulus of composites.  相似文献   

18.
Understanding and controlling the hierarchical self-assembly of carbon nanotubes (CNTs) is vital for designing materials such as transparent conductors, chemical sensors, high-performance composites, and microelectronic interconnects. In particular, many applications require high-density CNT assemblies that cannot currently be made directly by low-density CNT growth, and therefore require post-processing by methods such as elastocapillary densification. We characterize the hierarchical structure of pristine and densified vertically aligned multi-wall CNT forests, by combining small-angle and ultra-small-angle x-ray scattering (USAXS) techniques. This enables the nondestructive measurement of both the individual CNT diameter and CNT bundle diameter within CNT forests, which are otherwise quantified only by delicate and often destructive microscopy techniques. Our measurements show that multi-wall CNT forests grown by chemical vapor deposition consist of isolated and bundled CNTs, with an average bundle diameter of 16 nm. After capillary densification of the CNT forest, USAXS reveals bundles with a diameter >4 μm, in addition to the small bundles observed in the as-grown forests. Combining these characterization methods with new CNT processing methods could enable the engineering of macro-scale CNT assemblies that exhibit significantly improved bulk properties.  相似文献   

19.
Kim TH  Wendelken JF  Li AP  Du G  Li W 《Nanotechnology》2008,19(48):485201
The electrical transport properties of individual carbon nanotubes (CNTs) and multi-terminal junctions of CNTs are investigated with a quadraprobe scanning tunneling microscope. The CNTs used in this study are made of stacked herringbone-type conical graphite sheets with a cone angle of ~20° to the tube axis, and the CNT junctions have no catalytic particles in the junction areas. The CNTs have a significantly higher resistivity than conventional CNTs with concentric walls. The straight CNTs display linear current-voltage (I-V) characteristics, indicating diffusive transport rather than ballistic transport. The structural deformation in CNTs with bends substantially increases the resistivity in comparison with that for the straight segments on the same CNTs, and the I-V curve departs slightly from linearity in curved segments. The junction area of the CNT junctions behaves like an ohmic-type scattering center with linear I-V characteristics. In addition, a gating effect has not been observed, in contrast to the case for conventional multi-walled CNT junctions. These unusual transport properties can be attributed to the enhanced inter-layer interaction in the herringbone-type CNTs.  相似文献   

20.
Shearing the carbon nanotubes (CNTs) to desired size or trimming the CNT tips conveniently is usually necessary for many applications. CNTs are normally believed possessing very high strength and toughness. In this paper we present a simple and novel method to actualize this process. In this method, aligned CNT arrays were embedded in paraffin matrix, and then the materials were carefully sliced up along the direction normal to the CNTs with a microtome. These slices consisted of vertically aligned CNTs with desired and uniform length. The experiments proved that there were enough interaction forces between the CNTs and the paraffin matrix to prevent the CNTs from being pulled out during the machining process. These sheared CNTs have shown better performance for thermal interface materials and field emission applications. This process may redound to unlocking the great potential of CNT applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号