首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Titanium dioxide (TiO2) films on glassy carbon (GC) electrode surface were prepared by the liquid phase deposition (LPD) process for different deposition times. The morphological structure, interfacial property and electrocatalytic activity of as-prepared LPD TiO2 films on GC surface were studied by field-emission scanning electron microscopy (FE-SEM), cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). The FE-SEM observation showed that the deposition time controlled the morphology of film on GC surface. With increasing deposition time, TiO2 formed nanoparticles at the initial 5-h stage and compact thick films after 20 h. Due to the semiconducting properties of TiO2, the LPD films inhibited the electron transfer process of [Fe(CN)6]3−/[Fe(CN)6]4− on GC by increasing the redox reaction peak potential separation of CV curve and electron transfer resistance of EIS. The inhibition was increased with TiO2 film thickness. Nevertheless, the onset reduction potential of maleic acid decreased with increasing LPD TiO2 film thickness while the cathodic and anodic currents increased, demonstrating the useful electrocatalytic activity of LPD TiO2 films.  相似文献   

2.
Liquid phase deposition treatment (LPD) was applied to form a corrosion protective titanium dioxide (TiO2) film on commercially available pure magnesium. Changing the solution pH, from acidic to highly alkaline, and with the addition of sucrose, it becomes possible to form a highly adhesive and thin TiO2 film on commercially available pure magnesium without any heat treatment. The role of the sucrose may be attributed to the formation of tetrafluoroboric acid (BF4) in the solution reducing the homogeneous nucleation of TiO2 in the LPD solution. The film formed in the weak alkaline environment shows better corrosion resistance than at other LPD conditions, while the average rest potential is the same as that of as-polished specimens. This low rest potential may be due to micro-cracks in the formed film and high activity of the magnesium substrate.  相似文献   

3.
The liquid phase deposition (LPD) method was successfully used for preparing V-doped TiO2 thin film photocatalysts. In this simple and easily-controlled process, V-doped anatase TiO2 thin films were directly deposited on a soda lime glass substrate placed in an aqueous solution containing Ti- and V-fluoro complex ions, followed by annealing. The thin films were analyzed by XRD, XPS, UV-vis. V4+ ions were introduced into the lattice of TiO2 through in-situ substituting Ti4+. The absorption edge of V-doped TiO2 films shifted to visible light region. The highly efficient photocatalytic activity was verified by the decomposition of methylene blue under visible light irradiation.  相似文献   

4.
Polypyrrole/Titanium dioxide (PPy/TiO2) composite thin films were prepared by polymerizing the monomer pyrrole in aqueous solution containing a certain amount of TiO2 particles at room temperature, and their response to ammonia (NH3) gas was examined systematically. Compared with the pristine PPy film, which reached the saturation at the concentration of NH3 beyond 200 ppm, the composite films showed more stable response and higher sensitivity. Furthermore, the PPy/TiO2 composite thin films exhibited a low detection limit of 2 ppm. The film thickness, which had a strong influence on the film sensitivity to NH3, could be controlled by varying the polymerization time. The sensitivity to NH3 gas of the samples with different content of TiO2 and different molar ratio of PPy/TiO2/oxidant was studied. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

5.
Undoped and tantalum-doped titania (TiO2:Ta) films were synthesized via metalorganic chemical vapor deposition (MOCVD). The crystallization qualities, surface morphologies and optical properties of the deposited films were systematically characterized. The results indicated that the films having low doping levels were epitaxial anatase titania along [001] orientation with high transparency in visible region. The optical band gap could be modulated from 3.38 to 3.52?eV by controlling Ta doping levels. Ultraviolet (UV) photoelectric detectors with metal-semiconductor-metal (MSM) structure were designed and fabricated based on the undoped and Ta-doped films. The maximum spectral response of 32.3?A/W was detected at about 315?nm for the 1% Ta-doped TiO2 film-based detector. The detectors based on the undoped and 1% Ta-doped TiO2 films also presented good temporal responses and visible-blind characteristics, showing excellent UV light detection performances.  相似文献   

6.
TiO2 (rutile) thin films were deposited via a hydrothermal process by adjusting the amount of ethanol, deposition time, and temperature. Especially, various amounts of ethanol generated different degrees of supersaturation in precursor solution. It allowed us to systematically change the width, lengths, and crystallinity of a vertically aligned 1‐D nanorod structure of TiO2 films. The oriented attachment, confirmed by scanning electron microscopy and transmission electron microscopy, was shown to be responsible for their lateral growth of TiO2 nanorods bundled by numerous well‐oriented nanowires and their vertical growth. TiO2 nanorod thin films were also characterized via X‐ray diffraction and UV‐Vis‐NIR spectrophotometer to find a correlation between the process conditions and nanostructural evolution. Dye sensitized solar cells were assembled to relate the nanostructures of TiO2 films with the effectiveness of its role as a photoelectrode.  相似文献   

7.
Synthesis of N doped TiO2 films were conducted by the atmospheric controlled pulsed laser deposition (AC-PLD) method to generate visible light active photocatalytic films. In this method, the anion doped TiO2 films were synthesized on a quartz substrate by the irradiation of a pulsed Nd:YAG laser on a TiO2 target in the presence of gaseous nitrogen containing reagents at reduced pressure. For nitrogen doping, the use of CH3CN was found to be more effective than the use of NH3. The visible light absorption properties of the films were very sensitive to the CH3CN partial pressure during ablation. When using CH3CN, nitrogen and an equal quantity of carbon was uniformly doped into the TiO2 films. The resultant films showed better catalytic performance than those which were either un-doped or doped using NH3. The formation of nitrogen doped TiO2 is discussed by relating experimental results to thermodynamic considerations. It is also suggested that stronger reducing agents such as carbon are required for doping nitrogen into TiO2 films.  相似文献   

8.
Novel nanocomposite films of TiO2 nanoparticles and hydrophobic polymers having polar groups, poly (bisphenol‐A and epichlorohydrin) or copolymer of styrene and maleic anhydride, with high refractive indices, high transparency, no color, solvent‐resistance, good thermal stability, and mechanical properties were prepared by incorporating surface‐modified TiO2 nanoparticles into polymer matrices. In the process of preparing colloidal solution of TiO2 nanoparticles, severe aggregation of particles can be reduced by surface modification using carboxylic acids and long‐chain alkyl amines. These TiO2 nanoparticles dispersed in solvents were found not to aggregate after mixing with polymer solutions. Transparent colorless free‐standing films were obtained by drying a mixture of TiO2 nanoparticles colloidal solution and polymer solutions in vacuum. Transmission electronic microscopic studies of the films suggest that the TiO2 nanoparticles of 3–6 nm in diameter were dispersed in polymer matrices while maintaining their original size. Thermogravimetric analysis results indicate that the nanocomposite film has good thermal stability and the weight fraction of observed TiO2 nanoparticles in the film is in good accordance with that of theoretical calculations. The refractive index of nanocomposite films of TiO2 and poly(bisphenol‐A and epichlorohydrin) was in the range of 1.58–1.81 at 589 nm, which linearly increased with the content of TiO2 nanoparticles from 0 to 80 wt %. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 2007  相似文献   

9.
TiO2 or SiO2 nanoparticles dispersed in an acetone solvent containing iodine were deposited on Mg-Al-Zn alloy by electrophoretic deposition (EPD). Subsequently, the composite oxide films were formed on the substrate by anodization in KOH-Na2SiO3 aqueous solutions containing TiO2 or SiO2 nanoparticles. The films formed by EPD were improved binding with the substrate by anodization under high voltages with sparking, and then the anodic films consisted of Si-Mg or Ti-Si-Mg composite oxides. The film thicknesses of TiO2 and SiO2 on the alloy increased with anodization time. In polarization tests, the films anodized under high voltages with sparking in the alkaline solutions had high corrosion resistance. Thus, the composite oxide films formed in the present method were successful in providing corrosion resistance to Mg alloy.  相似文献   

10.
We investigated the growth of TiO2 on poly((tetrahydropyran‐2‐yl N‐(2‐methacryloxyethyl) carbamate)‐co‐(methyl 4‐(3‐methacryloyloxypropoxy) cinnamate) (THP‐polymer) using thermal heating, octyl isocyanate (OIC), and glutaraldehyde. It is found that TiO2 can be grown on surfaces terminated with ? NH2 and ? O? groups from aqueous solution. However, TiO2 did not deposit on ? CH3 terminated surfaces, due to the low surface energy of these surfaces. Fourier transform infrared spectroscopy and thermogravimetric analysis data showed that the ? THP functional group can be removed and the surface functional group converted to ? NH2 by heating the material over 180°C. OIC can then be immobilized on the surface after heating, changing the surface functional group from ? NH2 to ? CH3. As TiO2 can be deposited from solution on ? NH2 terminated, but not ? CH3 terminated surfaces, THP‐polymer can be used to switch the surface properties by thermal activation and subsequent reaction with OIC. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

11.

Improving photophysical properties of poly[2-methoxy-5-(3,7-dimethyl-octyloxy)-1,4-phenylenevinylene]-end capped with dimethylphenyl, MDMO-PPV-DMP, was achieved via incorporation anatase titania nanoparticles (TiO2 NPs). Various contents of TiO2 NPs (up to 50 wt%) were dispersed into fixed concentration of the MDMO-PPV-DMP (5 mg/mL) via solution blending method followed by spin coating onto cleaned glass substrates to form their thin films. The formation of MDMO-PPV-DMP/TiO2 nanocomposites was evidenced from the results of X-ray diffractograms and Fourier transform infrared spectra, while the homogeneity of the films was detected by field emission-scanning electron microscopy (FE-SEM). Increasing the contents of TiO2 NPs resulted in a slight decrease (up to ~?0.07 eV) in both direct and indirect energy band gaps of the MDMO-PPV-DMP in the nanocomposite thin films. A higher degree of disorder in the electronic structure of the MDMO-PPV-DMP/TiO2 nanocomposite and increasing the localized states density within the forbidden gap can be achieved by increasing the energy tail values and decreasing the steepness parameter with rising the TiO2 NPs content. The enhancement in emission intensity and broadening of emission spectra with increasing the TiO2 NPs content can be explained by the charge trapping effect and particle size distribution, respectively. Moreover, the incorporation of TiO2 NPs into the MDMO-PPV-DMP led to tuning its emitted light color which is of distinct interest in optoelectronic devices.

  相似文献   

12.
A semi-active T-type micromixer is designed to intensify micromixing by actuating magnetic nanoparticles (MNPs). Five permanent magnets in a zig-zag arrangement are located next to the mixing channel of the micromixer to apply the magnetic field to the fluid flow. Micromixing performance is considered in terms of the segregation index (XS) by the Villermaux/Dushman reaction test. The effects of magnetic flux intensity (B = 380–500 mT), the concentration of MNPs (φ = 0.002–0.01 [w/v]), and flow rate ratios on XS and pressure drop are investigated. By increasing MNPs concentration from φ = 0.002–0.008 (w/v), XS decreased and the rise in φ up to 0.008 (w/v) has not been significant on XS. Maximum mixing efficiency (i.e., minimum XS = 0.0088) is achieved for B = 500 mT and φ = 0.01 (w/v). By applying the magnetic field, the mixing performance increased due to the motion of MNPs, but its negative effect is an increase in the pressure drop along the micromixer reactor. Generally, with the formation of MNPs barriers inside the mixing channel, the main fluid flows through these layers and creates the sinusoidal flow paths compared to no magnetic field conditions, and thus, a superior mixing efficiency could be attained.  相似文献   

13.
Double-surface-silvered polyimide (PI) films have been successfully fabricated via a direct ion-exchange self-metallization method using silver ammonia complex cation ([Ag(NH3)2]+) as silver resource and bis[4-(3,4-dicarboxyphenoxy)phenyl]propane dianhydride/4,4′-oxydianiline (BPADA/ODA)-based poly(amic acid) (PAA) as the PI precursor. The alkaline characteristic of the silver precursor dramatically improves the efficiency of the ion exchange and film metallization process. By using an aqueous [Ag(NH3)2]+ solution with a concentration of only 0.01M and an ion-exchange time of only 5 min, metallized films with desirable performance could be easily obtained by simply heating the silver(I)-doped PAA films to 300°C. The strong hydrolysis effect of the basic [Ag(NH3)2]+ cations on the flexible and acidic BPADA/ODA PAA chains was observed during the ion exchange process by the quantitative evaluation of the mass loss of PAA matrix. Nevertheless, under the present experimental conditions, the final metallized film essentially retained the basic structural, thermal, and mechanical properties of the pristine PI, which make it a truly applicable material. © 2012 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

14.
In this study, structural, morphological and optical properties, and gas sensor performance of magnesium oxide (MgO) doped titanium dioxide (TiO2) thin films were investigated in detail. Gas sensor metallic patterns were fabricated on Si substrate using traditional photolithographic technique. MgO doped TiO2 thin films were deposited on formed Pt electrode surface by confocal sputtering (co-sputtering) system as the active layer. Thin film characterizations were realized by using secondary ion mass spectroscopy (SIMS), atomic force microscope (AFM) and UV–Vis Spectrometer (UV–Vis). Gas sensing measurements were performed by gas sensing test system against methane gas at working temperature of 300?°C. To evaluate deposition and thermal annealing effects on the sensing performance, sensors were tested under gas. The sensitivity and response/recovery time of gas sensors were measured in 1000?ppm. MgO doped TiO2 based sensor at substrate temperature of 100?°C has high sensitivity and short response/recovery time.  相似文献   

15.
A TiO2-Co-a composite powder was prepared via carbonizing and selective oxidation processing of a Ti-Co alloy. The conventionally mixed TiO2-Co-c composite powder and pure TiO2 were sintered at 1100, 1200, 1300, 1400?°C, respectively. The structural characterization was performed using X-ray diffraction, field emission scattering electron microscopy (FE-SEM), and transmission electron microscopy (TEM). The sintered samples were more densified, and melted bonding occurred at temperature higher than 1300?°C. The flexural strength and fracture toughness of the TiO2-Co-a sample were higher than those of the TiO2 and TiO2-Co-c sintered at temperature higher than 1300?°C, while the Vickers hardness of TiO2-Co-a was the lowest at all sintering temperatures. The sintered TiO2-Co-a sample was more ductile and strengthened than the TiO2-Co-c sample with added metallic Co binder via mechanical mixing. The enhanced mechanical properties of the TiO2-Co-a sample were due to the fine dispersion of the metallic Co binder wetted with a TiO2 matrix.  相似文献   

16.
Polyimide/silica–titania (PI/SiO2–TiO2) hybrid films were prepared via an in situ sol–gel process. The PI precursor, poly(amic acid) (PAA), which contains 2,2'‐bis[4‐(4‐aminophenoxy)‐phenyl]propane (p‐BAPPP), 3,3',4,4'‐ benzophenetetracarboxylic anhydride (BTDA) and 3‐aminopropyltrimethoxysilane (APrTMOS), was first synthesized; this was followed by the addition of phenyltrimethoxysilane (PTMS) and/or tetraethyl orthotitanate (Ti(OEt)4) to fabricate PI/SiO2–TiO2 films. The relative content of SiO2 to TiO2 has remarkable effects on the crosslink structure and resultant properties of the hybrids. XPS results confirm that the amount of Si on the surface of the hybrids is higher than that in the bulk. The distribution of Ti in the hybrid films is contrary to the above trend because of the formation of three‐dimensional Si? O? Si, Si? O? Ti, and Ti? O? Ti networks. The SiO2 content of the hybrids containing only silica significantly affects their refractive index, contact angle, and dielectric constant. The films with added PTMS show higher contact angles than pure PI because nonpolar segments, ? C2H6 or benzene groups, tend to distribute on the surface. Upon the addition of (Ti(OEt)4), some hydrophilic segments on the surface of the hybrids are induced because of the formation of a crosslinked structure. The denser crosslinked molecular structure, and consequently lower CTE and higher Tg are obtained from hybrids containing more TiO2. By comparing the above properties and flexibility, the best composition of metal oxides (SiO2/TiO2) in hybrids is 20/80. That is, an optimum ratio of metal oxides in PI hybrids induces superior properties for advanced practical applications. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

17.
The effect of TiO2 nanoparticles for sun-weathering protection of UV-cured coatings is investigated. TiO2 is either introduced in the form of nanoparticles in the photocurable formulations or generated in situ via sol–gel process. Cured films containing comparable amounts of TiO2 were weathered for 800 h under UV irradiation and compared with free-TiO2 coating. The TiO2 presence induces a clear lower mass loss decrease during weathering as well as a lower gel content decrease. The TiO2 screen effect is also confirmed by a lower alkyl-band reduction monitored by FT-IR during weathering. The TiO2 generated in situ via sol–gel gives rise to transparent coatings without interfering with photopolymerization process and therefore without compromising UV-cured film properties.  相似文献   

18.
The formation of self-organized TiO2 nanotube array films by electrochemical anodizing titanium foils was investigated in a developed organic–inorganic mixed electrolyte. It was found that the structure and morphology of the TiO2 nanotube layer were greatly dependent upon the electrolyte composition, anodizing potential and time. Under the optimized electrolyte composition and electrochemical conditions, a controllable, well-ordered TiO2 nanotube array layer could be fabricated in a short time. The diameters of the as-prepared TiO2 nanotubes could be adjusted from 20 to 150 nm, and the thickness could be adjusted from a few hundred nanometers to several micrometers. The photoresponse and the photocatalytic activity of the highly ordered TiO2 nanotube array films were also examined. The nanotube array film with a thickness of about 2.5 μm had the highest incident photon to photocurrent conversion efficiency (IPCE) (34.3%) at the 350 nm wavelength, and had better charge transfer ability under UV light illumination. The photocatalytic experimental results indicated that the 450 °C annealing samples have the highest photodegradation efficiency for methyl orange pollutant.  相似文献   

19.
TiO2 nanorod films have been deposited on ITO substrates by dc reactive magnetron sputtering technique. The structures of these nanorod films were modified by the variation of the oxygen pressure during the sputtering process. Although all these TiO2 nanorod films deposited at different oxygen pressures show an anatase structure, the orientation of the nanorod films varies with the oxygen pressure. Only a very weak (101) diffraction peak can be observed for the TiO2 nanorod film prepared at low oxygen pressure. However, as the oxygen pressure is increased, the (220) diffraction peak appears and the intensity of this diffraction peak is increased with the oxygen pressure. The results of the SEM show that these TiO2 nanorods are perpendicular to the ITO substrate. At low oxygen pressure, these sputtered TiO2 nanorods stick together and have a dense structure. As the oxygen pressure is increased, these sputtered TiO2 nanorods get separated gradually and have a porous structure. The optical transmittance of these TiO2 nanorod films has been measured and then fitted by OJL model. The porosities of the TiO2 nanorod films have been calculated. The TiO2 nanorod film prepared at high oxygen pressure shows a high porosity. The dye-sensitized solar cells (DSSCs) have been assembled using these TiO2 nanorod films prepared at different oxygen pressures as photoelectrode. The optimum performance was achieved for the DSSC using the TiO2 nanorod film with the highest (220) diffraction peak and the highest porosity.  相似文献   

20.
High performance is expected in dye-sensitized solar cells (DSSCs) that utilize one-dimensional (1-D) TiO2 nanostructures owing to the effective electron transport. However, due to the low dye adsorption, mainly because of their smooth surfaces, 1-D TiO2 DSSCs show relatively lower efficiencies than nanoparticle-based ones. Herein, we demonstrate a very simple approach using thick TiO2 electrospun nanofiber films as photoanodes to obtain high conversion efficiency. To improve the performance of the DSCCs, anatase-rutile mixed-phase TiO2 nanofibers are achieved by increasing sintering temperature above 500°C, and very thin ZnO films are deposited by atomic layer deposition (ALD) method as blocking layers. With approximately 40-μm-thick mixed-phase (approximately 15.6?wt.% rutile) TiO2 nanofiber as photoanode and 15-nm-thick compact ZnO film as a blocking layer in DSSC, the photoelectric conversion efficiency and short-circuit current are measured as 8.01% and 17.3?mA?cm?2, respectively. Intensity-modulated photocurrent spectroscopy and intensity-modulated photovoltage spectroscopy measurements reveal that extremely large electron diffusion length is the key point to support the usage of thick TiO2 nanofibers as photoanodes with very thin ZnO blocking layers to obtain high photocurrents and high conversion efficiencies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号