首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The flow around an isolated horizontal‐axis wind turbine is estimated by means of a new vortex code based on the Biot–Savart law with constant circulation along the blades. The results have been compared with numerical simulations where the wind turbine blades are replaced with actuator lines. Two different wind turbines have been simulated: one with constant circulation along the blades, to replicate the vortex method approximations, and the other with a realistic circulation distribution, to compare the outcomes of the vortex model with real operative wind‐turbine conditions (Tjæreborg wind turbine). The vortex model matched the numerical simulation of the turbine with constant blade circulation in terms of the near‐wake structure and local forces along the blade. The results from the Tjæreborg turbine case showed some discrepancies between the two approaches, but overall, the agreement is qualitatively good, validating the analytical method for more general conditions. The present results show that a simple vortex code is able to provide an estimation of the flow around the wind turbine similar to the actuator‐line approach but with a negligible computational effort. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

2.
To predict the unsteady aerodynamic loads of horizontal-axis wind turbines (HAWTs) during operations under yawing and pitching conditions, an unsteady numerical simulation method is proposed. This method includes a nonlinear lifting line method to compute the aerodynamic loads on the blades and a time-accurate free-vortex method to simulate the wake. To improve the convergence property in the nonlinear lifting line method, an iterative algorithm based on the Newton–Raphson method is developed. To increase the computational efficiency and the accuracy of the calculation, a new wake vortex model consisting of the vortex core model, the vortex sheet model and the tip vortex model is used. Wind turbines with different diameters, such as NREL Phase VI, the TU Delft model turbine and the Tjæreborg wind turbine, are used to validate the method for rotors operating at given yaw and/or pitch angles and during yawing and/or pitching processes at different wind speeds. The results, including the blade loads, the rotor torque and the locations of the tip vortex cores in the wake, agree well with the measured data and the computed data. It is shown that the proposed method can be used for predictions of unsteady aerodynamic loads and rotor wakes in the operational processes of blade pitching and/or rotor yawing.  相似文献   

3.
Aerodynamic and structural dynamic performance analysis of modern wind turbines are routinely estimated in the wind energy field using computational tools known as aeroelastic codes. Most aeroelastic codes use the blade element momentum (BEM) technique to model the rotor aerodynamics and a modal, multi‐body or the finite‐element approach to model the turbine structural dynamics. The present work describes the development of a novel aeroelastic code that combines a three‐dimensional viscous–inviscid interactive method, method for interactive rotor aerodynamic simulations (MIRAS), with the structural dynamics model used in the aeroelastic code FLEX5. The new code, called MIRAS‐FLEX, is an improvement on standard aeroelastic codes because it uses a more advanced aerodynamic model than BEM. With the new aeroelastic code, more physical aerodynamic predictions than BEM can be obtained as BEM uses empirical relations, such as tip loss corrections, to determine the flow around a rotor. Although more costly than BEM, a small cluster is sufficient to run MIRAS‐FLEX in a fast and easy way. MIRAS‐FLEX is compared against the widely used FLEX5 and FAST, as well as the participant codes from the Offshore Code Comparison Collaboration Project. Simulation tests consist of steady wind inflow conditions with different combinations of yaw error, wind shear, tower shadow and turbine‐elastic modeling. Turbulent inflow created by using a Mann box is also considered. MIRAS‐FLEX results, such as blade tip deflections and root‐bending moments, are generally in good agreement with the other codes. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

4.
MIRAS is a newly developed computational model that predicts the aerodynamic behavior of wind turbine blades and wakes subject to unsteady motions and viscous effects. The model is based on a three-dimensional panel method using a surface distribution of quadrilateral singularities with a Neumann no penetration condition. Viscous effects inside the boundary layer are taken into account through the coupling with the quasi-3D integral boundary layer solver Q3UIC. A free-wake model is employed to simulate the vorticity released by the blades in the wake. In this paper the new code is validated against measurements and/or CFD simulations for five wind turbine rotors, including three experimental model rotors [20–22], the 2.5 MW NM80 machine [23] and the NREL 5 MW virtual rotor [24]. Such a broad set of operational conditions and rotor sizes constitutes a very challenging validation matrix, with Reynolds numbers ranging from 5.0⋅104 to 1.2⋅107.  相似文献   

5.
Anders Ahlstrm 《风能》2006,9(3):193-210
Predicting the load in every possible situation is necessary in order to build safe and optimized structures. A highly dynamical case where large loads are developed is an emergency stop. Design simulation tools that can cope with the upcoming non‐linearities will be especially important as the turbines get bigger and more flexible. The model developed here uses the advanced commercial finite element system MSC.Marc, focused on non‐linear design and analysis, to predict the structural response. The aerodynamic model named AERFORCE, used to transform the wind to loads on the blades, is a blade element momentum model. A comparison is made between measured and calculated loads for the Tjæreborg wind turbine during emergency braking of the rotor. The simulation results correspond well with measured data. The conclusion is that the aeroelastic tool is likely to perform well when simulating more flexible turbines. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

6.
In scientific literature, when the aerodynamic design of a horizontal axis wind turbine is discussed, different brake state models are presented. The brake state models are implemented within a BEM code which is a 1-D numerical code, based on Glauert propeller theory, and able to predict HAWT performance. This code provides reliable results only if a proper brake state model and aerodynamic post-stall model are implemented.In this research, the authors have produced a numerical code based on BEM theory in conjunction with an aerodynamic post-stall model, indispensable for taking into account radial flow along the wind turbine blades (Himmelskamp Effect), and the brake state models by Buhl, combined with the calculation of Jonkman's tangential induction factor.In scientific literature, Shen's brake state model is commonly implemented within 1-D numerical codes, based on BEM theory. Subsequently, a comparison with Shen's brake state models was carried out. With the numerical code presented in this work, the power for an NREL wind rotor was predicted. With the numerical simulation, it was possible to notice when these different brake state model furnish results close to experimental data.  相似文献   

7.
A field test with a continuous wave wind lidar (ZephIR) installed in the rotating spinner of a wind turbine for unimpeded preview measurements of the upwind approaching wind conditions is described. The experimental setup with the wind lidar on the tip of the rotating spinner of a large 80 m rotor diameter, 59 m hub height 2.3 MW wind turbine (Vestas NM80), located at Tjæreborg Enge in western Denmark is presented. Preview wind data at two selected upwind measurement distances, acquired during two measurement periods of different wind speed and atmospheric stability conditions, are analyzed. The lidar‐measured speed, shear and direction of the wind field previewed in front of the turbine are compared with reference measurements from an adjacent met mast and also with the speed and direction measurements on top of the nacelle behind the rotor plane used by the wind turbine itself. Yaw alignment of the wind turbine based on the spinner lidar measurements is compared with wind direction measurements from both the nearby reference met mast and the turbine's own yaw alignment wind vane. Furthermore, the ability to detect vertical wind shear and vertical direction veer in the inflow, through the analysis of the spinner lidar data, is investigated. Finally, the potential for enhancing turbine control and performance based on wind lidar preview measurements in combination with feed‐forward enabled turbine controllers is discussed. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

8.
The influence of coning a wind turbine rotor is analysed numerically using the blade element momentum (BEM) method and an actuator disc model combined with the Navier–Stokes equations. The two models are compared and shortcomings of the BEM model are discussed. As a first case, an actuator disc with a constant normal loading of CT = 0·89 is considered. In accordance with theoretical predictions and investigations by Madsen and Rasmussen (European Wind Energy Conference, Nice, 1999; 138–141), the computations demonstrate that the power coefficient based on the projected area of the actuator disc is invariant to coning. The induced velocities, however, are no longer constant, but vary as a function of spanwise position. Next, the flow past the 2 MW Tjæreborg wind turbine is computed with and without coning. The most important findings from this study are that, although the power is reduced when the rotor is coned, the power coefficient based on the projected area is only slightly changed. The computations show that upstream coning results in a 2%–3% point higher power production than the corresponding downstream coning of the rotor. The Navier–Stokes computations show that the integrated loading, i.e. the root shear force, is higher than the one predicted by the BEM method, which is reduced approximately in proportion to the projected area. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

9.
风力发电机叶片设计与气动性能仿真研究   总被引:1,自引:0,他引:1  
运用叶素理论和气动理论,基于设定的风力机性能参数对风轮叶片进行三维设计。利用Gambit建模软件对风力机单叶片进行三维建模,再用Fluent软件进行风力机叶片气动性能的数值模拟,仿真叶片气动流场流态,并计算叶轮的升力、阻力和扭转力矩;验证风力机气动性能数值模拟的可行性和可靠性;计算发电机组功率和风能利用效率等性能参数。对风力发电机叶片的设计和气动数值模拟计算分析的工作可深化对风力发电机组三维叶片的气动性能的了解,仿真风力发电机组气动流场,能为风力机叶片的设计、改型和研发工作提供技术参数和指导意见。  相似文献   

10.
Blade element momentum (BEM) theory with airfoil data is a widely used technique for prediction of wind turbine aerodynamic performance, but the reliability of the airfoil data is an important factor for the prediction accuracy of aerodynamic loads and power. The airfoil characteristics used in BEM codes are mostly based on 2D wind tunnel measurements of airfoils with constant span. Due to 3D effects, a BEM code using airfoil data obtained directly from 2D wind tunnel measurements will not yield the correct loading and power. As a consequence, 2D airfoil characteristics have to be corrected before they can be used in a BEM code. In this article, we consider the MEXICO (Model EXperiments In Controlled cOnditions) rotor where airfoil data are extracted from CFD (Computational Fluid Dynamics) results. The azimuthally averaged velocity is used as the sectional velocity to define the angle of attack and the coefficient of lift and drag is determined by the forces on the blade. The extracted airfoil data are put into a BEM code without further corrections, and the calculated axial and tangential forces are compared to both computations using BEM with Shen's tip loss correction model and experimental data. The comparisons show that the recalculated forces by using airfoil data extracted from CFD have good agreements with the experiment.  相似文献   

11.
Most numerical and experimental studies of the performance of vertical‐axis wind turbines have been conducted with the rotors in steady, and thus somewhat artificial, wind conditions—with the result that turbine aerodynamics, under varying wind conditions, are still poorly understood. The vorticity transport model has been used to investigate the aerodynamic performance and wake dynamics, both in steady and unsteady wind conditions, of three different vertical‐axis wind turbines: one with a straight‐bladed configuration, another with a curved‐bladed configuration and another with a helically twisted configuration. The turbines with non‐twisted blades are shown to be somewhat less efficient than the turbine with helically twisted blades when the rotors are operated at constant rotational speed in unsteady wind conditions. In steady wind conditions, the power coefficients that are produced by both the straight‐bladed and curved‐bladed turbines vary considerably within one rotor revolution because of the continuously varying angle of attack on the blades and, thus, the inherent unsteadiness in the blade aerodynamic loading. These variations are much larger, and thus far more significant, than those that are induced by the unsteadiness in the wind conditions. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

12.
Wind power is the world's fastest growing renewable energy source, but operations and maintenance costs are still a major obstacle toward reliability and widescale adoption of wind power, accounting for a large part of the cost of energy for offshore installations. Structural health monitoring systems have been proposed for implementing condition‐based maintenance. The wind energy industry currently uses condition monitoring systems that are mostly adapted from roating machinery in other power generation industries. However, these systems have had limited effectiveness on wind turbines because of their atypical operating conditions, which are characterized by low and variable rotational speed, rapidly varying torque, extremely large rotors and stochastic loading from the wind. Although existing systems primarily take measurements from the nacelle, valuable information can be extracted from the structural dynamic response of the rotor blades to mitigate potentially damaging loading conditions. One such condition is rotor imbalance, which not only reduces the aerodynamic efficiency of the turbine and therefore its power output but can also lead to very large increases in loading on the drivetrain, blades and tower. The National Renewable Energy Laboratory's fast software was used to model both mass and aerodynamic imbalance in a 5 MW offshore wind turbine. It is shown that a combination of blade and nacelle measurements, most of which can be obtained from standard instrumentation already found on utility‐scale wind turbines, can be formulated into an algorithm used to detect and locate imbalance. The method described herein allows for imbalance detection that is potentially more sensitive than existing on‐line systems, while taking advantage of sensors that are already in place on many utility‐scale wind turbines. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

13.
The aerodynamic interactions that can occur within a wind farm can result in the constituent turbines generating a lower power output than would be possible if each of the turbines were operated in isolation. Tightening of the constraints on the siting of wind farms is likely to increase the scale of the problem in the future. The aerodynamic performance of turbine rotors and the mechanisms that couple the fluid dynamics of multiple rotors can be most readily understood by simplifying the problem and considering the interaction between only two rotors. The aerodynamic interaction between two rotors in both co‐axial and offset configurations has been simulated using the Vorticity Transport Model. The aerodynamic interaction is a function of the tip speed ratio, and both the streamwise and crosswind separation between the rotors. The simulations show that the momentum deficit at a turbine operating within the wake developed by the rotor of a second turbine is governed by the development of instabilities within the wake of the upwind rotor, and the ensuing structure of the wake as it impinges on the downwind rotor. If the wind farm configuration or wind conditions are such that a turbine rotor is subject to partial impingement by the wake produced by an upstream turbine, then significant unsteadiness in the aerodynamic loading on the rotor blades of the downwind turbine can result, and this unsteadiness can have considerable implications for the fatigue life of the blade structure and rotor hub. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

14.
This paper presents a newly developed high‐fidelity fluid–structure interaction simulation tool for geometrically resolved rotor simulations of wind turbines. The tool consists of a partitioned coupling between the structural part of the aero‐elastic solver HAWC2 and the finite volume computational fluid dynamics (CFD) solver EllipSys3D. The paper shows that the implemented loose coupling scheme, despite a non‐conservative force transfer, maintains a sufficient numerical stability and a second‐order time accuracy. The use of a strong coupling is found to be redundant. In a first test case, the newly developed coupling between HAWC2 and EllipSys3D (HAWC2CFD) is utilized to compute the aero‐elastic response of the NREL 5‐MW reference wind turbine (RWT) under normal operational conditions. A comparison with the low‐fidelity but state‐of‐the‐art aero‐elastic solver HAWC2 reveals a very good agreement between the two approaches. In a second test case, the response of the NREL 5‐MW RWT is computed during a yawed and thus asymmetric inflow. The continuous good agreement confirms the qualities of HAWC2CFD but also illustrates the strengths of a computationally cheaper blade element momentum theory (BEM) based solver, as long as the solver is applied within the boundaries of the employed engineering models. Two further test cases encompass flow situations, which are expected to exceed the limits of the BEM model. However, the simulation of the NREL 5‐MW RWT during an emergency shut down situation still shows good agreements in the predicted structural responses of HAWC2 and HAWC2CFD since the differences in the computed force signals only persist for an insignificantly short time span. The considerable new capabilities of HAWC2CFD are finally demonstrated by simulating vortex‐induced vibrations on the DTU 10‐MW wind turbine blade in standstill. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

15.
The aim of this study is to assess the load predicting capability of a classical Beddoes–Leishman dynamic stall model in a horizontal axis wind turbine environment, in the presence of yaw misalignment. The dynamic stall model was tailored to the horizontal axis wind turbine environment and validated against unsteady thick airfoil data. Subsequently, the dynamic stall model was implemented in a blade element‐momentum code for yawed flow, and the results were compared with aerodynamic measurements obtained in the MEXICO (Model Rotor Experiments under Controlled Conditions) project on a wind turbine rotor placed in a large scale wind tunnel. In general, reasonable to good agreement was found between the blade element‐momentum model and MEXICO data. When large yaw misalignments were imposed, poor agreement was found in the downstroke of the movement between the model and the experiment. Still, over a revolution, the maximum normal force coefficient predicted was always within 8% of experimental data at the inboard stations, which is encouraging especially when blade fatigue calculations are being considered. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

16.
A high‐fidelity linear time‐invariant model of the aero‐servo‐elastic response of a wind turbine with trailing‐edge flaps is presented and used for systematic tuning of an individual flap controller. The model includes the quasi‐steady aerodynamic effects of trailing‐edge flaps on wind turbine blades and is integrated in the linear aeroelastic code HAWCStab2. The dynamic response predicted by the linear model is validated against non‐linear simulations, and the quasi‐steady assumption does not cause any significant response bias for flap deflection with frequencies up to 2–3 Hz. The linear aero‐servo‐elastic model support the design, systematic tuning and model synthesis of smart rotor control systems. As an example application, the gains of an individual flap controller are tuned using the Ziegler–Nichols method for the full‐order poles. The flap controller is based on feedback of inverse Coleman transformed and low‐pass filtered flapwise blade root moments to the cyclic flap angles through two proportional‐integral controllers. The load alleviation potential of the active flap control, anticipated by the frequency response of the linear closed‐loop model, is also confirmed by non‐linear time simulations. The simulations report reductions of lifetime fatigue damage up to 17% at the blade root and up to 4% at the tower bottom. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

17.
Wind turbine rotors are normally designed such that rotor power coefficient is maximized. Much of this methodology has been inherited from the aviation industry. This paper points out that designing machines for maximum rotor aerodynamic efficiency does not necessarily lead to a lower levelized cost of energy. The argument sits on the premise that levelized cost of energy is strongly influenced by machine capital expenditure (CAPEX) and annual energy production (AEP). We therefore assume that the true design objective is to minimize the CAPEX/AEP ratio. The basis of an alternative design path is presented, which centres on the minimization of total volume of structural material in the wind turbine. This is done whilst maintaining a given rated power. This alternative methodology requires the removal of conventional pre‐set design variables and assumptions which relate to the maximization of rotor power coefficient. We examine how changing chord length, axial induction factor and aerofoil lift coefficient affect material volume in the blade. Following this, we use a custom‐made blade element momentum programme to explore the relative CAPEX of machines with varying design axial induction factor and varying lift coefficient. This relative cost is calibrated to the 5 MW National Renewable Energy Laboratory offshore reference turbine. The effects on the rotor, drivetrain and tower are considered. For a 5 MW offshore machine, it is shown that an overall CAPEX/AEP reduction of over 2% can be achieved by using a low‐induction rotor with blades possessing aerofoils operating at non‐peak lift to drag ratios. This economy is delivered notwithstanding a 2.3% drop in design rotor power coefficient. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

18.
This paper presents the experimental and numerical study on MEXICO wind turbine blades. Previous work by other researchers shows that large deviations exist in the loads comparison between numerical predictions and experimental data for the rotating MEXICO wind turbine. To reduce complexities and uncertainties, a non‐rotating experimental campaign has been carried out on MEXICO blades Delft University of Technology. In this new measurement, quasi‐2D aerodynamic characteristics of MEXICO blades on three spanwise sections are measured at different inflow velocities and angles of attack. Additionally, RANS simulations are performed with OpenFOAM‐2.1.1 to compare numerical results against measured data. The comparison and analysis of aerodynamic loads on the blade, where three different airfoil families and geometrical transition regions are used, show that for attached flow condition, RANS computation predicts excellent pressure distribution on the NACA airfoil section (r/R = 0.92) and good agreement is observed on the DU (r/R = 0.35) and RISØ (r/R = 0.60) airfoil sections. Unexpected aerodynamic characteristics are observed at the intermediate transition regions connecting the RISØ and DU airfoils, where sudden lift force drop is found at the radial position r/R = 0.55. Through numerical flow visualization, large‐scale vortical structures are observed on the suction side of the blade near the mid‐span. Moreover, counter‐rotating vortices are generated behind the blade at locations where unexpected loads occurs. Consequently, the RISØ airfoil could not give expected 2D aerodynamic characteristics because of upwash/downwash effects induced by these counter‐rotating vortices, which make 3D effects play an important role in numerical modeling when calculating the aerodynamic loads for MEXICO rotor. ©2016 The Authors Wind Energy Published by John Wiley & Sons Ltd  相似文献   

19.
A hybrid filament‐mesh vortex method is proposed and validated to predict the aerodynamic performance of wind turbine rotors and to simulate the resulting wake. Its novelty consists of using a hybrid method to accurately simulate the wake downstream of the wind turbine while reducing the computational time used by the method. The proposed method uses a hybrid approach, where the near wake is resolved by using vortex filaments, which carry the vorticity shed by the trailing edge of the blades. The interaction of the vortex filaments in the near vicinity of the wind turbine is evaluated using a direct calculation, whereas the contribution from the large downstream wake is calculated using a mesh‐based method. The hybrid method is first validated in detail against the well‐known MEXICO experiment, using the direct filament method as a comparison. The second part of the validation includes a study of the influence of the time‐integration scheme used for evolving the wake in time, aeroelastic simulations of the National Renewable Energy Laboratory 5 MW wind turbine and an analysis of the central processing unit time showing the gains of using the hybrid filament‐mesh method. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

20.
In this paper a surrogate optimization methodology using a three-dimensional viscous-inviscid interaction code for the aerodynamic design of wind-turbine rotors is presented. The framework presents a unique approach because it does not require the commonly-used blade element momentum (BEM) method. The three-dimensional viscous-inviscid interaction code used here is the accurate and fast MIRAS code developed at the Technical University of Denmark. In comparison with BEM, MIRAS is a higher-fidelity aerodynamic tool and thus more computationally expensive as well. Designing a rotor using MIRAS instead of an inexpensive BEM code represents a challenge, which is resolved by using the proposed surrogate-based approach. As a verification case, the methodology is applied to design a model wind-turbine rotor and is compared in detail with the one designed with BEM. Results demonstrate that nearly identical aerodynamic performance can be achieved using the new design method and that the methodology is effective for the aerodynamic design of wind-turbine rotors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号