首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
    
Biosynthesis of four samples of colloidal suspensions of gold nanoparticles is achieved using hydroalcoholic extract and three different separated compounds of the plant Bacopa procumbens. The nonlinear optical properties of each sample are characterized with the Z-scan technique. In all cases, the Z-scan curves indicate a negative or self-defocusing response, which is mainly attributed to thermal effects. Among the four samples, the hydroalcoholic extract was noted to have the highest nonlinear optical response and was selected to demonstrate the formation of self-collimated beams (SCBs). This kind of beams are obtained when a convergent CW laser, with only few tens of milliwatts of optical power, is introduced into the sample and induces a negative-lens effect that shifts the focal spot forward. As a result, the otherwise highly focused beam propagate with little divergence over lengths of up to 10?mm. Moreover, an SCB is capable of controlling and steering a weak probe beam of a different wavelength, since the probe experiences the lensing induced by the pump. Noteworthy, the response time of the material was found to be less than 0.07?s, which makes it a plausible candidate for photonic applications.  相似文献   

2.
周锐  李峰平 《光电工程》2017,44(2):172-184

本文主要介绍了纳米颗粒的短脉冲激光制备及其在非线性光学领域的应用。短脉冲激光制备纳米颗粒具有纯度高、操作简单和适用性广等优点,所制备的非线性纳米颗粒尺寸分布均匀,粒度小且可调控,在非线性光学材料中有着独特的地位。为了更深入地对此进行研究,本文介绍了纳米颗粒的光学非线性和激光的特点和原理。在此基础上,通过阐述短脉冲激光与物质相互作用的机理,说明了激光制备纳米颗粒所具有的优点,详细分析了制备条件对合成纳米颗粒的影响,并结合激光制备不同的纳米颗粒,介绍当前激光制备各类纳米颗粒的研究现状。激光制备纳米颗粒是一种操作简便、适用性广,且对环境友好的方法。

  相似文献   

3.
4.
5.
6.
7.
8.
    
An efficient and safe delivery system for small interfering RNA (siRNA) is required for clinical application of RNA interfering therapeutics. Polyethyleneimine (PEI)‐capped gold nanoparticles (AuNPs) are successfully manufactured using PEI as the reductant and stabilizer, which bind siRNA at an appropriate weight ratio by electrostatic interaction and result in well‐dispersed nanoparticles with uniform structure and narrow size distribution. With siRNA binding, PEI‐capped AuNPs induce more significant and enhanced reduction in targeted green fluorescent protein expression in MDA‐MB‐435s cells, though more internalized PEI/siRNA complexes in cells are evidenced by confocal laser scanning microscopy observation and fluorescence‐activated cell sorting analyses. PEI‐capped AuNPs/siRNA targeting endogenous cell‐cycle kinase, an oncogene polo‐like kinase 1 (PLK1), display significant gene expression knockdown and induce enhanced cell apoptosis, whereas it is not obvious when the cells are treated with PLK1 siRNA using PEI as the carrier. Without exhibiting cellular toxicity, PEI‐capped AuNPs appear to be suitable as a potential carrier for intracellular siRNA delivery.  相似文献   

9.
    
Branched gold nanoparticles with sharp tips are considered excellent candidates for sensing and field enhancement applications. Here, a rapid and simple synthesis strategy is presented that generates highly branched gold nanoparticles with hollow cores and a ca.100% yield through a simple one‐pot seedless reaction at room temperature in the presence of Triton X‐100. It is shown that multibranched hollow gold nanoparticles of tunable dimensions, branch density and branch length can be obtained by adjusting the concentrations of the reactants. Insights into the formation mechanism point toward an aggregative type of growth involving hollow core formation first, and branching thereafter. The pronounced near‐infrared (NIR) plasmon band of the nanoparticles is due to the combined contribution from hollowness and branching, and can be tuned over a wide range (≈700–2000 nm). It is also demonstrated that the high environmental sensitivity of colloidal dispersions based on multibranched hollow gold nanoparticles can be boosted even further by separating the nanoparticles into fractions of given sizes and improved monodispersity by means of a glycerol density gradient. The possibility to obtain highly monodisperse multibranched hollow gold nanoparticles with predictable dimensions (50–300 nm) and branching and, therefore, tailored NIR plasmonic properties, highlights their potential for theranostic applications.  相似文献   

10.
11.
12.
    
We study a class of nonlinear Hamiltonians, with applications in quantum optics. The interaction terms of these Hamiltonians are generated by taking a linear combination of powers of a simple ‘beam splitter’ Hamiltonian. The entanglement properties of the eigenstates are studied. Finally, we show how to use this class of Hamiltonians to perform special tasks such as conditional state swapping, which can be used to generate optical cat states and to sort photons.  相似文献   

13.
We propose and study nonlinear mathematical models describing the intracellular time dynamics of viral RNA accumulation for positive-sense single-stranded RNA viruses. Our models consider different replication modes ranging between two extremes represented by the geometric replication (GR) and the linear stamping machine replication (SMR). We first analyse a model that quantitatively reproduced experimental data for the accumulation dynamics of both polarities of turnip mosaic potyvirus RNAs. We identify a non-degenerate transcritical bifurcation governing the extinction of both strands depending on three key parameters: the mode of replication (α), the replication rate (r) and the degradation rate (δ) of viral strands. Our results indicate that the bifurcation associated with α generically takes place when the replication mode is closer to the SMR, thus suggesting that GR may provide viral strands with an increased robustness against degradation. This transcritical bifurcation, which is responsible for the switching from an active to an absorbing regime, suggests a smooth (i.e. second-order), absorbing-state phase transition. Finally, we also analyse a simplified model that only incorporates asymmetry in replication tied to differential replication modes.  相似文献   

14.
15.
    
Biomolecular nanostructures in nature are drawing increasing interests in the field of materials sciences. As a typical group of them, virus‐based nanoparticles (VNPs), which are nanocages or nanorods assembled from capsid proteins of viruses, have been widely exploited as templates to guide the fabrication of complex nanoarchitectures (NAs), because of their appropriate sizes (ca. 20–200 nm), homogeneity, addressable functionalization, facile modification via chemical and genetic routes, and convenient preparation. Foreign materials can be positioned in the inner cavity or on the outer surface of VNPs, through either direct synthesis or assembling preformed nanomaterials. Simultaneous use of the inner and outer space of VNPs facilitates integration of multiple functionalities in a single NA. This review briefly summarizes the strategies for fabrication of NAs templated by VNPs and wide applications of these NAs in fields of catalysis, energy, biomedicine, and nanophotonics, etc.  相似文献   

16.
石运芹  李梅金 《功能材料》2012,43(18):2425-2430
具有核-壳结构的金纳米包覆的磁性纳米粒子,既具有磁性纳米粒子的特点又增加了金纳米的表面化学性质,近年来受到研究人员的广泛关注。简要综述了近年来国内外制备2类核-壳结构的金包铁磁性纳米复合材料的研究进展及相关应用,并对其应用前景进行了展望。  相似文献   

17.
    
Nanoparticles emitting two‐photon luminescence are broadly used as photostable emitters for nonlinear microscopy. Second‐harmonic generation (SHG) as another two‐photon mechanism offers complementary optical properties but the reported sizes of nanoparticles are still large, of a few tens of nanometers. Herein, coherent SHG from single core/shell CdTe/CdS nanocrystals with a diameter of 10 to 15 nm is reported. The nanocrystal excitation spectrum reveals resonances in the nonlinear efficiency with an overall maximum at about 970 nm. Polarization analysis of the second‐harmonic emission confirms the expected zinc blende symmetry, and allows extraction of the three‐dimensional nanocrystal orientation. The small size of these nonlinearly active quantum dots, together with the intrinsic coherence and orientation sensitivity of the SHG process, are well adapted for ultrafast probing of optical near‐fields with high resolution as well as for orientation tracking for bioimaging applications.  相似文献   

18.
We discuss three-dimensional (3D) light bullets (LBs) in a system of coupled nonlinear Schrödinger equations with spatially modulated diffraction and nonlinearity coefficients, under the action of a Bessel trapping potential. Exact spatiotemporal vector solitary waves, or LBs, are obtained using the method of separation of variables and the Hirota’s bilinear method. An inverse solution procedure is introduced, in which the desired localized solutions of equations are proposed first and then the corresponding diffraction and nonlinearity coefficients determined. New 3D wave packets are built with the help of spherical harmonics in the form of multipole, necklace, and toroidal solitary pulses. Numerical solution of the full system of equations indicates that an initial wave in the form of such 3D wave packets is longlived but slowly changing along the propagation direction.  相似文献   

19.
以花状纳米金(AuNFs)或球形纳米金(AuNPs)为催化剂,硼氢化钠为供氢体,在不同温度下以对硝基苯酚为模板发生还原反应。结果表明,该催化反应温度与时间呈负相关。50℃时,AuNFs所需反应时间为7min,37℃时所需时间为15 min,20℃时所需时间为45 min。该反应为准一级动力学反应。AuNFs的Ea值37.97 kJ/mol,比AuNPs的Ea值51.51 kJ/mol小,说明花状纳米金比球形纳米金具有更高的催化活性。  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号