首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Bimetallic nanoparticle (NP) catalysts are interesting for the development of selective catalysts in reactions such as the reduction of CO2 by H2 to form hydrocarbons. Here the synthesis of Ni–Co NPs is studied, and the morphological and structural changes resulting from their activation (via oxidation/reduction cycles), and from their operation under reaction conditions, are presented. Using ambient‐pressure X‐ray photoelectron spectroscopy, X‐ray absorption spectroscopy, and transmission electron microscopy, it is found that the initial core–shell structure evolves to form a surface alloy due to nickel migration from the core. Interestingly, the core consists of a Ni‐rich single crystal and a void with sharp interfaces. Residual phosphorous species, coming from the ligands used for synthesis, are found initially concentrated in the NP core, which later diffuse to the surface.  相似文献   

2.
3.
Sunscreens containing ZnO and TiO2 nanoparticles (NPs) are increasingly applied to skin over long time periods to reduce the risk of skin cancer. However, long‐term toxicological studies of NPs are very sparse. The in vitro toxicity of ZnO and TiO2 NPs on keratinocytes over short‐ and long‐term applications is reported. The effects studied are intracellular formation of radicals, alterations in cell morphology, mitochondrial activity, and cell‐cycle distribution. Cellular response depends on the type of NP, concentration, and exposure time. ZnO NPs have more pronounced adverse effects on keratinocytes than TiO2. TiO2 has no effect on cell viability up to 100 μg mL?1, whereas ZnO reduces viability above 15 μg mL?1 after short‐term exposure. Prolonged exposure to ZnO NPs at 10 μg mL?1 results in decreased mitochondrial activity, loss of normal cell morphology, and disturbances in cell‐cycle distribution. From this point of view TiO2 has no harmful effect. More nanotubular intercellular structures are observed in keratinocytes exposed to either type of NP than in untreated cells. This observation may indicate cellular transformation from normal to tumor cells due to NP treatment. Transmission electron microscopy images show NPs in vesicles within the cell cytoplasm, particularly in early and late endosomes and amphisomes. Contrary to insoluble TiO2, partially soluble ZnO stimulates generation of reactive oxygen species to swamp the cell redox defense system thus initiating the death processes, seen also in cell‐cycle distribution and fluorescence imaging. Long‐term exposure to NPs has adverse effects on human keratinocytes in vitro, which indicates a potential health risk.  相似文献   

4.
Harnessing solar energy for the production of clean hydrogen by photo­electrochemical water splitting represents a very attractive, but challenging approach for sustainable energy generation. In this regard, the fabrication of Fe2O3–TiO2 photoanodes is reported, showing attractive performances [≈2.0 mA cm−2 at 1.23 V vs. the reversible hydrogen electrode in 1 M NaOH] under simulated one‐sun illumination. This goal, corresponding to a tenfold photoactivity enhancement with respect to bare Fe2O3, is achieved by atomic layer deposition of TiO2 over hematite (α‐Fe2O3) nanostructures fabricated by plasma enhanced‐chemical vapor deposition and final annealing at 650 °C. The adopted approach enables an intimate Fe2O3–TiO2 coupling, resulting in an electronic interplay at the Fe2O3/TiO2 interface. The reasons for the photocurrent enhancement determined by TiO2 overlayers with increasing thickness are unraveled by a detailed chemico‐physical investigation, as well as by the study of photo­generated charge carrier dynamics. Transient absorption spectroscopy shows that the increased photoelectrochemical response of heterostructured photoanodes compared to bare hematite is due to an enhanced separation of photogenerated charge carriers and more favorable hole dynamics for water oxidation. The stable responses obtained even in simulated seawater provides a feasible route in view of the eventual large‐scale generation of renewable energy.  相似文献   

5.
微乳液化学剪裁制备纳米钛酸钡和二氧化钛   总被引:1,自引:0,他引:1  
以钛酸丁酯、氢氧化钡和正己醇制备凝胶,用吐温-80/正已醇/环己烷/水制成w/O型微乳液在25℃下进行化学剪裁,将前驱物在550℃下煅烧,分别制备出了纳米钛酸钡和纳米二氧化钛.对产物进行X-射线粉末衍射(XRD)、透射电镜(TEM)、红外(IR)和差热(DTA)分析,研究了煅烧温度对BaTi03和Ti02纳米质点粒径和组成的影响.结果表明,最好的煅烧温度是550℃.所得纳米钛酸钡为具有较好晶型的六方晶体,粒径在30~42nm之间,钡钛摩尔比为1:1;纳米二氧化钛为单一的锐钛矿型八面体结构,平均粒径小于50nm.实验表明,通过凝胶.微乳液法合成的纳米物质可以有效地减少团聚,控制微粒的组成和粒径,且操作简单,成本低.  相似文献   

6.
The discovery and elucidation of genetic codes has profoundly changed not only biology but also many fields of science and engineering. The fundamental building blocks of life comprises of four simple deoxyribonucleotides and yet their combinations serve as the carrier of genetic information that encodes for proteins that can carry out many biological functions due to their unique functionalities. Inspired by nature, the functionalities of DNA molecules have been used as a capping ligand for controlling morphology of nanomaterials, and such a control is sequence dependent, which translates into distinct physical and chemical properties of resulting nanoparticles. Herein, an overview on the use of DNA as engineered codes for controlling the morphology of metal nanoparticles, such as gold, silver, and Pd‐Au bimetallic nanoparticles is provided. Fundamental insights into rules governing DNA controlled growth mechanisms are also summarized, based on understanding of the affinity of the DNA nucleobases to various metals, the effect of combination of nucleobases, functional modification of DNA, the secondary structures of DNA, and the properties of the seed employed. The resulting physical and chemical properties of these DNA encoded nanomaterials are also reviewed, while perspectives into the future directions of DNA‐mediated nanoparticle synthesis are provided.  相似文献   

7.
采用黑索金为可爆药剂,用爆轰法制备出了类球形混晶纳米TiO2粉体,并对合成的纳米TiO2粉末进行了表征。以甲基橙为研究对象,紫外灯为光源,研究了甲基橙初始浓度、纳米TiO2用量、甲基橙溶液初始pH值、超声分散和光照时间对甲基橙降解率的影响。研究表明,所制备的纳米TiO2为锐钛矿、板钛矿和金红石组成的混晶体,平均粒度约为18nm。在氧化钛浓度固定的条件下,甲基橙溶液初始浓度越高降解率越低。随着氧化钛加入量的增加,甲基橙溶液的降解率先增大后减小,而氧化钛的加入量超过40.0mg/L后,甲基橙溶液的降解率又呈升高的趋势。超声波分散的纳米氧化钛的表观反应速率明显高于未经超声波分散的氧化钛的表观反应速率。随着光催化时间的延长,光转化率逐渐升高。  相似文献   

8.
The synthesis of single‐fluorophore‐bis(micrometer‐sized DNA) triblock supramolecules and the optical and structural characterization of the construct at the single‐molecule level is reported. A fluorophore‐bis(oligodeoxynucleotide) triblock is synthesized via the amide‐coupling reaction. Subsequent protocols of DNA hybridization/ligation are developed to form the supramolecular triblock structure with λ‐DNA fragments on the micrometer length scale. The successful synthesis of the micrometer‐sized DNA–single‐fluorophore–DNA supramolecule is confirmed by agarose gel electrophoresis with fluorescence imaging under UV excitation. Single triblock structures are directly imaged by combined scanning force microscopy and single‐molecule fluorescence microscopy, and provide unambiguous confirmation of the existence of the single fluorophore inserted in the middle of the long DNA. This type of triblock structure is a step closer to providing a scaffold for single‐molecule electronic devices after metallization of the DNAs.  相似文献   

9.
10.
The composite of carboxyl-modified multi-walled carbon nanotubes (MWNT-COOHs) and TiO2 nanoparticles was prepared by improved solvothermal process. X-ray diffraction (XRD), transmission electron microscope (TEM) and UV-Vis spectra were used to characterize the products. The results show that MWNT-COOHs were “welded” by the TiO2 nanoparticles attached to the open ends of MWNT-COOHs. Compared with pure TiO2 nanoparticles, the composite displays higher photocatalytic activity with 99.9% of degradation ratio of copper sulfophthalocyanine after 3 h irradiation.  相似文献   

11.
本文采用溶胶 凝胶法制备二氧化钛纳米微粒。用XRD分析了二氧化钛胶体经不同温度热处理后的晶粒粒径。分析表明温度在 4 73K时TiO2 微粒呈锐钛矿结构 ,粒径约为 5 5nm。在 6 73K以上TiO2 粒径迅速增大 ,微粒出现锐钛相与金红石相混晶结构。 973K时TiO2 微粒完全转化为金红石相。用晶界结构弛豫的观点解释粒径随热处理温度变化关系  相似文献   

12.
13.
Building a rechargeable battery with high capacity, high energy density, and long lifetime contributes to the development of novel energy storage devices in the future. Although carbon materials are very attractive anode materials for lithium‐ion batteries (LIBs), they present several deficiencies when used in sodium‐ion batteries (SIBs). The choice of an appropriate structural design and heteroatom doping are critical steps to improve the capacity and stability. Here, carbon‐based nanofibers are produced by sulfur doping and via the introduction of ultrasmall TiO2 nanoparticles into the carbon fibers (CNF‐S@TiO2). It is discovered that the introduction of TiO2 into carbon nanofibers can significantly improve the specific surface area and microporous volume for carbon materials. The TiO2 content is controlled to obtain CNF‐S@TiO2‐5 to use as the anode material for SIBs/LIBs with enhanced electrochemical performance in Na+/Li+ storage. During the charge/discharge process, the S‐doping and the incorporation of TiO2 nanoparticles into carbon fibers promote the insertion/extraction of the ions and enhance the capacity and cycle life. The capacity of CNF‐S@TiO2‐5 can be maintained at ≈300 mAh g?1 over 600 cycles at 2 A g?1 in SIBs. Moreover, the capacity retention of such devices is 94%, showing high capacity and good stability.  相似文献   

14.
Microstructure and properties of HVOF‐sprayed coatings of the TiO2 – Cr2O3 system Thermally sprayed titanium oxide coatings are known for their good tribological properties and their electrical conductivity. The latter is due to oxygen deficiency from the stoichiometric composition TiO2. These lattice defects can be ordered and are called crystallograhic shear planes. These structures are known as Magnéli phases. At high temperature in oxygen‐containing atmospheres the material forms isolating TiO2, therefore the application under such conditions is restricted. At the titania‐rich side of the system TiO2‐Cr2O3 also compounds with the structure of Magnéli‐phases are formed. According to information from the literature, these phases are stable in oxygen‐containing atmospheres and are therefore promising for corresponding coating applications at elevated temperatures. In this paper first results of systematic studies of microstructure and properties of HVOF‐sprayed coatings are presented.  相似文献   

15.
The real‐time temperature measurement of nanostructured materials is particularly attractive in view of increasing needs of local temperature probing with high sensitivity and resolution in nanoelectronics, integrated photonics, and biomedicine. Light‐induced heating and Raman scattering of single‐walled carbon nanotubes with adsorbed gold nanoparticles decorating silica microparticles are reported, by both green and near IR lasers. The plasmonic shell is used as nanoheater, while the single‐walled carbon nanotubes are Raman active and serve as a thermometer. Stokes and Anti‐Stokes Raman spectra of single‐walled carbon nanotubes serve to estimate the effective light‐induced temperature rise on the metal nanoparticles. The temperature rise is constant with time, indicating stability of the adsorption density. The effective temperatures derived from Stokes and Anti‐Stokes intensities are correlated with those measured in a heating stage. The resolution of the thermal experiments in our study was found to be 5–40 K.  相似文献   

16.
17.
Wide‐range, well‐separated, and tunable lifetime nanocomposites with ultrabright fluorescence are highly desirable for applications in optical multiplexing such as multiplexed biological detection, data storage, and security printing. Here, a synthesis of tunable fluorescence lifetime nanocomposites is reported featuring europium chelate grafted onto the surface of plasmonic core–shell nanoparticles, and systematically investigated their optical performance. In a single red color emission channel, more than 12 distinct fluorescence lifetime populations with high fluorescence efficiency (up to 73%) are reported. The fluorescence lifetime of Eu‐grafted core–shell nanoparticles exhibits a wider tunable range, possesses larger lifetime interval and is more sensitive to separation distance than that of ordinary Eu‐doping core–shell type. These superior performances are attributed to the unique nanostructure of Eu‐grafed type. In addition, these as‐prepared nanocomposites are used for security printing to demonstrate optical multiplexing applications. The optical multiplexing experiments show an interesting pseudo‐information “a rabbit in a well” and conceal the real message “NKU.”  相似文献   

18.
19.
20.
通过控制四氯化钛(TiCl4)的水解速度,制备出水杨酸(SA)原位表面修饰的TiO2纳米颗粒(TiO2/SA).通过X射线衍射仪(XRD),高分辨透射电子显微镜(HRTEM),红外光谱仪(FT-IR),热分析(TG-DTA)和X射线光电子能谱(XPS)等实验分析手段对表面改性前后的TiO2纳米颗粒进行了表征,结果表明表面修饰水杨酸的TiO2纳米颗粒在乙醇中有良好的分散性,将TiO2/SA加入到光信息存储薄膜材料(PVA/AM)中,能大大提高材料的衍射效率,降低布拉格偏移.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号