首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
酒泉地区风电场风电功率预报研究   总被引:1,自引:0,他引:1  
利用NOAA天气预报模式Weather Research andForecasting Model(WRF)结合统计订正方法对酒泉地区短期风电功率预报进行了预报实验。与实际出力比较24 h短期风电功率预报精度较高。并在此基础上利用风电场附近测风塔观测数据通过时间序列发进行了0~4 h超短期预报实验,预报结果显示0~2 h预报结果有利于运行调度。  相似文献   

2.
Accurate short‐term power forecasts are crucial for the reliable and efficient integration of wind energy in power systems and electricity markets. Typically, forecasts for hours to days ahead are based on the output of numerical weather prediction models, and with the advance of computing power, the spatial and temporal resolutions of these models have increased substantially. However, high‐resolution forecasts often exhibit spatial and/or temporal displacement errors, and when regarding typical average performance metrics, they often perform worse than smoother forecasts from lower‐resolution models. Recent computational advances have enabled the use of large‐eddy simulations (LESs) in the context of operational weather forecasting, yielding turbulence‐resolving weather forecasts with a spatial resolution of 100 m or finer and a temporal resolution of 30 seconds or less. This paper is a proof‐of‐concept study on the prospect of leveraging these ultra high‐resolution weather models for operational forecasting at Horns Rev I in Denmark. It is shown that temporal smoothing of the forecasts clearly improves their skill, even for the benchmark resolution forecast, although potentially valuable high‐frequency information is lost. Therefore, a statistical post‐processing approach is explored on the basis of smoothing and feature engineering from the high‐frequency signal. The results indicate that for wind farm forecasting, using information content from both the standard and LES resolution models improves the forecast accuracy, especially with a feature selection stage, compared with using the information content solely from either source.  相似文献   

3.
Nocturnal low‐level jet (LLJ) events are commonly observed over the Great Plains region of the USA, thus making this region more favorable for wind energy production. At the same time, the presence of LLJs can significantly modify vertical shear and nocturnal turbulence in the vicinities of wind turbine hub height, and therefore has detrimental effects on turbine rotors. Accurate numerical modeling and forecasting of LLJs are thus needed for precise assessment of wind resources, reliable prediction of power generation and robust design of wind turbines. However, mesoscale numerical weather prediction models face a challenge in precisely forecasting the development, magnitude and location of LLJs. This is due to the fact that LLJs are common in nocturnal stable boundary layers, and there is a general consensus in the literature that our contemporary understanding and modeling capability of this boundary‐layer regime is quite poor. In this paper, we investigate the potential of the Weather Research and Forecasting (WRF) model in forecasting LLJ events over West Texas and southern Kansas. Detailed observational data from both cases were used to assess the performance of the WRF model with different model configurations. Our results indicate that the WRF model can capture some of the essential characteristics of observed LLJs, and thus offers the prospect of improving the accuracy of wind resource estimates and short‐term wind energy forecasts. However, the core of the LLJ tended to be higher as well as slower than what was observed, leaving room for improvement in model performance. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

4.
宋煜  郭军红  袁荔  李薇 《热能动力工程》2023,38(10):158-166
光伏发电功率与气象因素密切相关,可靠的功率预测对光伏入网和电网安全运行具有重要意义。为提高光伏短期发电功率预测的准确率,基于某40 MW光伏电站历史功率和气象数据,在不同季节和天气类型下利用逐步聚类分析方法(SCA)搭建光伏短期预测模型,实现分季节和天气类型的光伏功率预测。模型对比结果表明:逐步聚类分析方法具有较高的预测精度,在四季、单一天气类型和复合天气类型3方面预测精度分别提高了11.13%,9.51%和8.26%。  相似文献   

5.
Today, there is a growing interest in developing short‐term wind power forecasting tools able to provide reliable information about particular, so‐called ‘extreme’ situations. One of them is the large and sharp variation of the production a wind farm can experience within a few hours called ramp event. Developing forecast information specially dedicated to ramps is of primary interest because of both the difficulties that usual models have to predict and the potential risk they represent in the management of a power system. First, we propose a methodology to characterize ramps of wind power production with a derivative filtering approach derived from the edge detection literature. Then we investigate the skill of numerical weather prediction ensembles to make probabilistic forecasts of ramp occurrence. Through conditioning probability forecasts of ramp occurrence to the number of ensemble members forecasting a ramp in time intervals, we show how ensembles can be used to provide reliable forecasts of ramps with sharpness. Our study relies on 18 months of wind power measures from an 8 MW wind farm located in France and forecasts ensemble of 51 members from the Ensemble Prediction System of the European Center for Medium‐Range Weather Forecasts. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

6.
The increased integration of wind power into the power system implies many challenges to the network operators, mainly due to the hard to predict and variability of wind power generation. Thus, an accurate wind power forecast is imperative for systems operators, aiming at an efficient and economical wind power operation and integration into the power system. This work addresses the issue of forecasting short‐term wind speed and wind power for 1 hour ahead, combining artificial neural networks (ANNs) with optimization techniques on real historical wind speed and wind power data. Levenberg‐Marquardt (LM) and particle swarm optimization (PSO) are used as training algorithms to update the weights and bias of the ANN applied to wind speed predictions. The forecasting performance produced by the proposed models are compared with each other, as well as with the benchmark persistence model. Test results show higher performance for ANN‐LM wind speed forecasting model, outperforming both ANN‐PSO and persistence. The application of ANN‐LM to wind power forecast revealed also a good performance, with an average improvement of 2.8% in relation to persistence. An innovative analysis of mean absolute percentage error (MAPE) behaviour in time and in typical days is finally offered in the paper.  相似文献   

7.
运用广义回归神经网络预测风电场功率   总被引:1,自引:0,他引:1  
运用广义回归神经网络对风电场出力提前了24h预测。对引入数值气象预报信息与不引人数值气象预报信息两种情况的预测结果进行了比较分析。首先,对前15d的风功率数据进行训练,通过交叉验证,建立模型,预测了未来一天的风电场出力。然后加入历史风速数据,对历史风速和风功率进行训练,利用数值气象预报信息,预测未来1d的风功率。通过算例表明,使用广义回归神经网络模型预测未来1d的风电场出力,预测结果能够跟踪实际风功率,同时加入数值气象预报信息的预测结果较不加入数值气象预报信息的神经网络预测,精度有所提高。  相似文献   

8.
基于物理原理的风电场短期风速预测研究   总被引:1,自引:0,他引:1  
对符合功率预测要求的短期风速预测进行研究,提出了基于物理原理的预测方法,该方法以数值天气预报(Numerical-Weather-Prediction,NWP)风速为输入数据,采用粗糙度变化模型与地形变化模型反映风电场局地效应对大气边界层风的影响;通过与不同风况下的实测风速进行比较,表明预测结果基本能满足预测精度的要求,但预测准确性会随风速变化剧烈程度的增强而有所降低;根据误差分析,NWP风速的准确性是影响预测结果的最主要因素。  相似文献   

9.
The Wind Power Prediction Tool (WPPT) has been installed in Australia for the first time, to forecast the power output from the 65MW Roaring 40s Renewable Energy P/L Woolnorth Bluff Point wind farm. This article analyses the general performance of WPPT as well as its performance during large ramps (swings) in power output. In addition to this, detected large ramps are studied in detail and categorized. WPPT combines wind speed and direction forecasts from the Australian Bureau of Meteorology regional numerical weather prediction model, MesoLAPS, with real‐time wind power observations to make hourly forecasts of the wind farm power output. The general performances of MesoLAPS and WPPT are evaluated over 1 year using the root mean square error (RMSE). The errors are significantly lower than for basic benchmark forecasts but higher than for many other WPPT installations, where the site conditions are not as complicated as Woolnorth Bluff Point. Large ramps are considered critical events for a wind power forecast for energy trading as well as managing power system security. A methodology is developed to detect large ramp events in the wind farm power data. Forty‐one large ramp events are detected over 1 year and these are categorized according to their predictability by MesoLAPS, the mechanical behaviour of the wind turbine, the power change observed on the grid and the source weather event. During these events, MesoLAPS and WPPT are found to give an RMSE only roughly equivalent to just predicting the mean (climatology forecast). Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

10.
11.
This paper presents a data‐driven approach for estimating the degree of variability and predictability associated with large‐scale wind energy production for a planned integration in a given geographical area, with an application to The Netherlands. A new method is presented for generating realistic time series of aggregated wind power realizations and forecasts. To this end, simultaneous wind speed time series—both actual and predicted—at planned wind farm locations are needed, but not always available. A 1‐year data set of 10‐min averaged wind speeds measured at several weather stations is used. The measurements are first transformed from sensor height to hub height, then spatially interpolated using multivariate normal theory, and finally averaged over the market resolution time interval. Day‐ahead wind speed forecast time series are created from the atmospheric model HiRLAM (High Resolution Limited Area Model). Actual and forecasted wind speeds are passed through multi‐turbine power curves and summed up to create time series of actual and forecasted wind power. Two insights are derived from the developed data set: the degree of long‐term variability and the degree of predictability when Dutch wind energy production is aggregated at the national or at the market participant level. For a 7.8 GW installed wind power scenario, at the system level, the imbalance energy requirements due to wind variations across 15‐min intervals are ±14% of the total installed capacity, while the imbalance due to forecast errors vary between 53% for down‐ and 56% for up‐regulation. When aggregating at the market participant level, the balancing energy requirements are 2–3% higher. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

12.
在电力系统中风电装机容量增长的背景下,高精度的超短期风功率预测是保证系统可靠运行的重要基础。为此,提出一种以复数据经验模态分解的噪声辅助信号分解法(NACEMD)和Elman神经网络为基础的超短期风功率组合预测方法。在风功率序列中添加白噪声,使用NACEMD将其按照不同波动尺度逐级分解,得到不同时频特性的分量,然后利用Elman神经网络对各分量建立预测模型,以各分量的不同时频特性为基准对预测结果进行叠加,得到风功率预测值。实例分析表明,提出的组合预测法既可进一步减轻现有方法中存在的模态混叠现象,具备较高的预测精度。研究成果可为风功率预测提供参考。  相似文献   

13.
熊伟  程加堂  艾莉 《水电能源科学》2013,31(10):247-249
为提高风电场短期风速的预测精度,引入一种基于改进蚁群算法优化神经网络的非线性组合预测方法,按误差平方和最小原则对所建灰色GM(1,1)模型、BP网络和RBF网络三种单一预测数据进行非线性组合,并将其结果作为最终预测值。仿真结果表明,该方法的平均绝对误差及均方误差分别为17.76%和3.68%,均小于单一模型、线性组合模型及神经网络组合模型的预测结果,提高了网络的泛化能力,降低了预测风险,为风电场风速预测提供了一种新途径。  相似文献   

14.
Accurate wind power prediction can alleviate the negative influence on power system caused by the integration of wind farms into grid. In this paper, a novel combination model is proposed with the purpose of enhancing short‐term wind power prediction precision. Singular spectrum analysis is utilized to decompose the original wind power series into the trend component and the fluctuation component. Then least squares support vector machine (LSSVM) is applied to forecast the trend component while deep belief network (DBN) is utilized to predict the fluctuation component. By this means, the performance advantages of LSSVM and DBN can be brought into full play. Moreover, the locality‐sensitive hashing search algorithm is introduced to cluster the nearest training samples to further improve forecasting accuracy. Besides, the effect of LSSVM based on different kernel functions and the number of the nearest samples is investigated. The simulation results show that the normalized root mean square errors of the proposed model based on linear kernel function from 1‐step to 3‐step forecasting are 2.13%, 5.03%, and 7.29%, respectively, which outperforms all the other comparison models. Therefore, it can be concluded that the proposed combination model provides a promising and effective alternative for short‐term wind power prediction.  相似文献   

15.
A combination of physical and statistical treatments to post‐process numerical weather predictions (NWP) outputs is needed for successful short‐term wind power forecasts. One of the most promising and effective approaches for statistical treatment is the Model Output Statistics (MOS) technique. In this study, a MOS based on multiple linear regression is proposed: the model screens the most relevant NWP forecast variables and selects the best predictors to fit a regression equation that minimizes the forecast errors, utilizing wind farm power output measurements as input. The performance of the method is evaluated in two wind farms, located in different topographical areas and with different NWP grid spacing. Because of the high seasonal variability of NWP forecasts, it was considered appropriate to implement monthly stratified MOS. In both wind farms, the first predictors were always wind speeds (at different heights) or friction velocity. When friction velocity is the first predictor, the proposed MOS forecasts resulted to be highly dependent on the friction velocity–wind speed correlation. Negligible improvements were encountered when including more than two predictors in the regression equation. The proposed MOS performed well in both wind farms, and its forecasts compare positively with an actual operative model in use at Risø DTU and other MOS types, showing minimum BIAS and improving NWP power forecast of around 15% in terms of root mean square error. Further improvements could be obtained by the implementation of a more refined MOS stratification, e.g. fitting specific equations in different synoptic situations. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

16.
Forecasts of wind power production are increasingly being used in various management tasks. So far, such forecasts and related uncertainty information have usually been generated individually for a given site of interest (either a wind farm or a group of wind farms), without properly accounting for the spatio‐temporal dependencies observed in the wind generation field. However, it is intuitively expected that, owing to the inertia of meteorological forecasting systems, a forecast error made at a given point in space and time will be related to forecast errors at other points in space in the following period. The existence of such underlying correlation patterns is demonstrated and analyzed in this paper, considering the case‐study of western Denmark. The effects of prevailing wind speed and direction on autocorrelation and cross‐correlation patterns are thoroughly described. For a flat terrain region of small size like western Denmark, significant correlation between the various zones is observed for time delays up to 5 h. Wind direction is shown to play a crucial role, while the effect of wind speed is more complex. Nonlinear models permitting capture of the interdependence structure of wind power forecast errors are proposed, and their ability to mimic this structure is discussed. The best performing model is shown to explain 54% of the variations of the forecast errors observed for the individual forecasts used today. Even though focus is on 1‐h‐ahead forecast errors and on western Denmark only, the methodology proposed may be similarly tested on the cases of further look‐ahead times, larger areas, or more complex topographies. Such generalization may not be straightforward. While the results presented here comprise a first step only, the revealed error propagation principles may be seen as a basis for future related work. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

17.
对风电功率预测系统中预测精度的讨论   总被引:2,自引:0,他引:2  
为了合理地利用风电,提高电力系统经济性,需要对风电场输出功率进行预测。针对目前风电场输出功率预测系统中预测结果缺乏足够精度的原因展开分析和讨论,在此基础上对预测模型中存在的问题以及对基础数据的处理方法进行了改进,并结合并网型风电场给预测系统带来的预测精度不准确的原因展开讨论,提出了解决方案,最后阐述了对提高风电功率预测精度还需要进一步做的工作。  相似文献   

18.
Wind conditions and output power characteristics of a wind farm in Japan are evaluated with highly resolved weather predictions from the so‐called cloud resolving storm simulator. One year of 30‐hour‐ahead predictions with 2‐km spatial resolution and 1‐hour time resolution are evaluated against 10‐minute averaged measurements (averaged to hourly data) from the wind farm. Also, extremely detailed shorter‐term predictions with 200‐m spatial resolution and 1‐second time resolution are evaluated against 1‐Hz measurements. For the hourly data, wind speeds are predicted with an RMSE of 3.0 to 3.5 m/s, and wind power with about 0.3 per unit. Wind direction is predicted with a standard deviation of errors of 16° to 28° for hourly data, and generally below 10° for the 1‐Hz data. We show that wind power variability—here in terms of increments—can be assessed on the timescale of several hours. The measured and predicted wind spectra are found similar on both short and long timescales.  相似文献   

19.
针对使用数值天气预报(NWP)数据进行风电功率预测时,NWP风速与实际风速存在偏差导致预测精度欠佳,提出一种基于注意力机制(Attenion)门控逻辑单元(GRU)数值天气预报风速修正和Stacking多算法融合的短期风电功率预测模型。首先,分析NWP预报风速和实际风速的皮尔逊相关系数,建立Attention-GRU风速修正模型,提高预报风速精度。其次,考虑风向、温度、湿度、气压、空气密度等气象因素,基于Stacking框架,提出融合XGBoost、LSTM、SVR、LASSO的多算法风电功率预测模型,同时采用网格搜索与交叉验证优化模型参数。最后,选取西北和东北两个典型风电场数据进行验证,算例结果表明,所提出模型能改善NWP风速精度并提升风电功率预测效果。  相似文献   

20.
Though wind power predictions have been consistently improved in the last decade, persistent reasons for remaining uncertainties are sudden large changes in wind speed, so-called ramps. Here, we analyse the occurrence of ramp events in a wind farm in Eastern Germany and the performance of a wind power prediction tool in forecasting these events for forecasting horizons of 15 and 30 min. Results on the seasonality of ramp events and their diurnal cycle are presented for multiple ramp definition thresholds. Ramps were found to be most frequent in March and April and least frequent in November and December. For the analysis, the wind power prediction tool is fed by different wind velocity forecast products, for example, numerical weather prediction (NWP) model and measurement data. It is shown that including observational wind speed data for very short-term wind power forecasts improves the performance of the power prediction tool compared to the NWP reference, both in terms of ramp detection and in decreasing the mean absolute error between predicted and generated wind power. This improvement is enhanced during ramp events, highlighting the importance of wind observations for very short-term wind power prediction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号