首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
《Ceramics International》2021,47(19):27058-27070
The porous SiC–Si3N4 composite ceramics with good EMW absorption properties were prepared by combination of gelcasting and carbothermal reduction. The pre-oxidation of Si3N4 powders significantly improved the rheological properties of slurries (0.06 Pa s at 103.92 s−1) and also suppressed the generation of NH3 and N2 from Si3N4 hydrolysis and reaction between Si3N4 and initiator APS, thereby reducing the pore defects in green bodies and enhancing mechanical properties with a maximum value of 42.88 MPa. With the extension of oxidation time from 0 h to 10 h, the porosity and pore size of porous SiC–Si3N4 composite ceramics increased from approximately 41.86% and 1.0–1.5 μm to 46.33% and ~200 μm due to the production of CO, N2 and gaseous SiO, while the sintering shrinkage decreased from 16.24% to 10.50%. With oxidation time of 2 h, the Si2N2O fibers formed in situ by the reaction of Si3N4 and amorphous SiO2 effectively enhanced the mechanical properties, achieving the highest flexural strength of 129.37 MPa and fracture toughness of 4.25 MPa m1/2. Compared with monolithic Si3N4 ceramics, the electrical conductivity, relative permittivity and dielectric loss were significantly improved by the in-situ introduced PyC from the pyrolysis of three-dimensional network DMAA-MBAM gel in green bodies and the SiC from the carbothermal reduction reaction between PyC and SiO2 and Si3N4. The porous SiC–Si3N4 composite ceramics prepared by the unoxidized Si3N4 powders demonstrated the optimal EMW absorption properties with reflection loss of −22.35 dB at 8.37 GHz and 2 mm thickness, corresponding to the effective bandwidth of 8.20–9.29 GHz, displaying great application potential in EMW absorption fields.  相似文献   

2.
《Ceramics International》2018,44(18):22412-22420
In this work, Si3N4 ceramics were fabricated through an aqueous gelcasting method using a low–toxic monomer called N, N–dimethylacrylamide (DMAA) followed by gas pressure sintering at 1850 °C for 2 h under 6 MPa N2 atmosphere. The effect of solid loading on performance of slurries, green and sintered bodies was investigated systematically. The results show that the slurries with a solid loading as high as 50 vol% (viscosity 0.17 Pa.s at 100 s–1) were achieved. With the increase of solid loading (30–50 vol%), the green bodies exhibited a monotonically decreased, however high enough in general, flexural strength of 16.50–11.52 MPa, which was comparable to that of widely–used neurovirulent acrylamide (AM) gelling system. In regard to the sintered bodies, increasing solid loading significantly promoted sintering and improved mechanical properties and thermal conductivity as a result of the increased density, bimodal distribution structure, as well as suitable interfacial bonding strength. The best performance parameters of Si3N4 ceramics, bulk density of 3.25 g/cm3, apparent porosity of 0.67%, flexural strength of 898.92 MPa, fracture toughness of 6.42 MPa m1/2, Vickers hardness of 2.81 GPa, and thermal conductivity of 34.69 W m–1 K–1, were obtained at 50 vol% solid loading. This work renders low–toxic DMAA gelling system promising prospect in preparation of high–performance Si3N4 ceramics by gelcasting.  相似文献   

3.
Porous silicon nitride (Si3N4) ceramics incorporated with hexagonal boron nitride (h-BN) and silica (SiO2) nanoparticles were fabricated by pressureless-sintering at relatively low temperature, in which stearic acid was used as pore-making agent. Bending strength at room and high temperatures, thermal shock resistance, fracture toughness, elastic modulus, porosity and microstructure were investigated in detail. The mechanical properties and thermal shock resistance behavior of porous Si3N4 ceramics were greatly influenced by incorporation of BN and SiO2 nanoparticles. Porous BN–SiO2–Si3N4 composites were successfully obtained with good critical thermal shock temperature of 800 °C, high bending strength (130 MPa at room temperature and 60 MPa at 1000 °C) and high porosity.  相似文献   

4.
In this study, Ti–Si–C composite coatings were synthesized via plasma spraying of agglomerated powders prepared by a spray drying/precursor pyrolysis technology using Ti, Si, and sucrose powders. The influence of Si content, ranging from 0 wt% to 24 wt%, on the microstructure, mechanical properties, and oxidation resistance of the composite coatings was investigated. Results show that the phase composition of the Ti–Si–C composite coatings changes with the increasing Si content. The coatings without Si addition consist of TiC and Ti3O; the coatings with 6–18 wt% Si are composed of TiC, Ti5Si3, and Ti3O; the coatings with Si content of 24 wt% form only TiC and Ti5Si3 phases. As the Si content increases, the hardness of the Ti–Si–C composite coatings increases first and then decreases, depending on the intrinsic hardness of the ceramic phases, the brittleness of Ti5Si3, and the defects such as pores and cracks. The Ti–Si–C composite coatings have high wear resistance due to the in-situ synthesized high-hardness TiC and Ti5Si3. Owing to the high brittleness of Ti5Si3, the increasing Si content leads to higher wear volume loss at room temperature, which can be partially improved in high-temperature wear tests. The oxidation resistance of Ti–Si–C composite coatings increases with the increase of Si content, and the higher the oxidation temperature, the more obvious the influence of the Si addition on oxidation resistance.  相似文献   

5.
《Ceramics International》2016,42(10):11554-11561
Post-reaction sintering of a powder compact of Si and sintering aids is a useful technique for fabricating silicon nitride (Si3N4) ceramics at low costs. In order to inhibit the inhomogeneous and uncontrollable exothermic nitridation of Si in the powder compact, Si–Y2O3–Al2O3 nanocomposite particles are designed as an aid for post-reaction sintering. These Si–Y2O3–Al2O3 nanocomposite particles are prepared via mechanical treatment applying high shear stress. Scanning electron microscopy (SEM) observations show that Y2O3 and Al2O3 particles are homogenously dispersed, and fixed to the Si particles. A green compact prepared using the Si–Y2O3–Al2O3 nanocomposite particles results in lower electrical resistivity than that prepared using a powder mixed by wet ball-milling, which suggests that Si particles in the green compact prepared using the nanocomposite particles are isolated by Y2O3 and Al2O3 particles. The isolation of Si particles by the sintering aids successfully prevents the Si particles from melting and agglomerating during the nitridation process, resulting in a higher nitridation ratio and higher α-Si3N4 phase content due to the inhibition of rapid heat transfer caused by the exothermic reaction. The nitridation ratio also increases with the applied power during mechanical treatment. As a result of firing the homogeneously nitrided powder compacts at high temperatures, Si3N4 ceramics with homogeneous microstructure and improved density are successfully fabricated in this manner.  相似文献   

6.
《Ceramics International》2022,48(14):20126-20133
In this study, high-strength and wave-transmission silicon nitride (Si3N4) composites were successfully developed via selective laser sintering (SLS) with cold isostatic pressing (CIP) after debinding and before final sintering, and the optimal moulding process parameters for the SLS Si3N4 ceramics were determined. The effects of the sintering aids and secondary CIP on the bulk density, porosity, flexural strength, fracture toughness, and wave-transmitting properties of the Si3N4 composites were studied. The results showed that the increased CIP pressure was beneficial to the densification of SLS Si3N4 ceramics and improved their mechanical properties. However, the wave-transmitting performance decreased as the CIP pressure increased. The Si3N4 ceramics prepared by the moulding of sample S11 were more in line with the performance requirements of the radomes. To obtain good comprehensive performance, an additional 3% of interparticle Y2O3 was added to the pre-printed mixed powder of granulated Si3N4 particles and resin and the secondary CIP pressure was adjusted to 280 MPa. After sintering, the bending strength, fracture toughness, and dielectric constant of the Si3N4 ceramics were 651 MPa, 6.0 MPa m1/2, and 3.48 respectively. This study provides an important method for preparing of Si3N4 composite radomes using SLS process.  相似文献   

7.
Si3N4–SiCN composite ceramics were successfully fabricated through precursor infiltration pyrolysis (PIP) method using polysilazane as precursor and porous Si3N4 as preform. After annealed at temperatures varying from 900 °C to 1400 °C, the phase composition of SiCN ceramics, electrical conductivity and dielectric properties of Si3N4–SiCN composite ceramics over the frequency range of 8.2–12.4 GHz (X-band) were investigated. With the increase of annealing temperature, the content of amorphous SiCN decreases and that of N-doped SiC nano-crystals increases, which leads to the increase of electrical conductivity. After annealed at 1400 °C, the average real and imaginary permittivities of Si3N4–SiCN composite ceramics are increased from 3.7 and 4.68 × 10?3 to 8.9 and 1.8, respectively. The permittivities of Si3N4–SiCN composite ceramics show a typical ternary polarization relaxation, which are ascribed to the electric dipole and grain boundary relaxation of N-doped SiC nano-crystals, and dielectric polarization relaxation of the in situ formed graphite. The Si3N4–SiCN composite ceramics exhibit a promising prospect as microwave absorbing materials.  相似文献   

8.
Porous Si3N4–SiC composite ceramic was fabricated by infiltrating SiC coating with nano-scale crystals into porous β-Si3N4 ceramic via chemical vapor infiltration (CVI). Silica (SiO2) film was formed on the surface of rod-like Si3N4–SiC grains during oxidation at 1100 °C in air. The as-received Si3N4–SiC/SiO2 composite ceramic attains a multi-shell microstructure, and exhibits reduced impedance mismatch, leading to excellent electromagnetic (EM) absorbing properties. The Si3N4–SiC/SiO2 fabricated by oxidation of Si3N4–SiC for 10 h in air can achieve a reflection loss of ?30 dB (>99.9% absorption) at 8.7 GHz when the sample thickness is 3.8 mm. When the sample thickness is 3.5 mm, reflection loss of Si3N4–SiC/SiO2 is lower than ?10 dB (>90% absorption) in the frequency range 8.3–12.4 GHz, the effective absorption bandwidth is 4.1 GHz.  相似文献   

9.
Si3N4–TiN composites were successfully fabricated via planetary ball milling of 70 mass% Si3N4 and 30 mass% Ti powders, followed by spark plasma sintering (SPS) at 1250–1350 °C. The sintering mechanism for SPS was a hybrid of dissolution–reprecipitation and viscous flow. The electrical resistivity decreased with increasing sintering temperature up to a minimum at 1250 °C and then increased with the increasing sintering temperature. The composites prepared by SPS at 1250–1350 °C could be easily machined by electrical discharge machining. Composite prepared by SPS at 1300 °C showed a high hardness (17.78 GPa) and a good machinability.  相似文献   

10.
The influence of various rare-earth oxide additives and the addition of SiC nanoparticles on the thermal shock resistance of the Si3N4 based materials was investigated. The location of SiC particles inside the Si3N4 grains contributed to a higher level of residual stresses, which caused a failure at the lower temperature difference compared to the composites with a preferential location of the SiC at the grain boundaries. A critical temperature difference increased with an increasing ionic radius of RE3+ for both the composites and the monoliths. The critical temperature difference for the composite (580 °C) and the monolith (680 °C) sintered with La2O3 was significantly higher compared to the composite and the monolith doped with Lu2O3 (430 °C). A good agreement was found between the results of the critical temperature difference estimated by the indentation quench test and that obtained by the strength retention method.  相似文献   

11.
《Ceramics International》2023,49(3):4403-4411
B4C-20 wt% TiB2 ceramics were fabricated by hot pressing B4C and ball-milled TiB2 powder mixtures. The effects of the TiB2 particle size on the microstructure and mechanical properties were investigated. The results showed that the TiB2 particle size played an important role in the mechanical properties of the B4C–TiB2 ceramics. In addition, SiO2 introduced by ball milling was beneficial for densification but detrimental to the mechanical properties of the B4C–TiB2 ceramics. The typical values of relative density, hardness, flexural strength, and fracture toughness of the ceramics were 99.20%, 35.22 GPa, 765 MPa, and 7.69 MPa m1/2, respectively. The toughening mechanisms of the B4C–TiB2 ceramics were explained by crack deflection and crack branching. In this study, the effects of high pressure and temperature caused liquefying SiO2 to migrate to the surface of B4C–TiB2 and react with diffused carbon source in the graphite foil to form a 30 μm thick SiC layered structure, which improved the high-temperature oxidation resistance of the material. The unique SiC layered structure overcame the insufficient oxidation resistance of B4C and TiB2, thereby improving the oxidation resistance of the ceramics under high-temperature service conditions.  相似文献   

12.
To ensure the porous Si3N4 ceramics with an excellent comprehensive performance for the application of radome, the commonly neglected effect of designed microstructures on dielectric and mechanical properties was investigated. Two typical porous Si3N4 ceramics with similar porosity but different microstructures (unidirectionally aligned and uniformly micropore structure with a different dimension of grains) were obtained by freeze casting and gel-casing process. The results indicate that the microstructure has a significant influence on the mechanical properties yet not an obvious effect on the dielectric properties, which means the dielectric constant can be reliably designed based on the porosity without consideration of different microstructures, meanwhile, the mechanical properties can be optimized by the microstructure. Besides, the results of the dielectric properties predicted by Finite Element Analysis show a high agreement with the experimental results. The study could be helpful to design a wave-transmitting component with integrated structure and function.  相似文献   

13.
《Ceramics International》2022,48(2):1916-1925
The phase formation behavior of β′-SiAlON with the general formula Si6-zAlzOzN8-z was studied comprehensively for z values from 1 to 3 using spark plasma sintering (SPS) as the consolidation technique at synthesis temperatures from 1400 to 1700 °C. The samples were prepared close to the β′-SiAlON composition line: Si3N4 ? 4/3(AlN·Al2O3) in the phase diagram using (A) nano-sized amorphous Si3N4 and (B) micro-sized β-Si3N4 precursors. Field-emission scanning electron microscopy (FESEM) was used for microstructural analysis.Most compositions reached almost full density at all SPS temperatures. Compared with the micro-sized β-Si3N4 precursor, the nano-sized amorphous Si3N4 precursor accelerated the reaction kinetics, promoting the formation of dense β′-SiAlON + O′-SiAlON composites after SPS at synthesis temperatures of 1400–1500 °C. This resulted in very high values of Vickers hardness (Hv10) = 18.2–19.2 GPa for the z = 1 composition related to the hardness of the O′-SiAlON component phase.In general, for samples synthesized from nano-sized amorphous Si3N4, which were almost fully dense, containing >95% β′-SiAlON, the hardness values were 13.4–13.8 GPa with a fracture toughness of 3.5–4.6 MPa m1/2. For equivalent samples synthesized from micro-sized β-Si3N4, hardness was in the range 13.9–14.4 GPa with a fracture toughness of 4.3–4.5 MPa.m1/2. These values are comparable with fully dense β′-SiAlONs, usually containing intergranular glass phase which has been sintered by HIP and other processes at much higher temperatures for longer times.  相似文献   

14.
Si3N4/nickel-base superalloy (Inconel-625) and Si3N4/Si3N4 joints with refractory metal (W and Mo) interlayers were vacuum brazed using a Ti-active braze Cu-ABA (92.75Cu–3Si–2Al–2.25Ti) at 1317 K for 30 min with the following interlayered arrangements: Si3N4/Mo/W/Inconel and Si3N4/Mo/W/Si3N4. The joints exhibited Ti segregation at the Si3N4/Cu-ABA interface, elemental interdiffusion across the joint interfaces, and sound metallurgical bonding. Knoop microhardness profiles revealed hardness gradients across the joints that mimicked the interlayered arrangement. The compressive shear strength of Si3N4/Si3N4 joints both with and without W and Mo layers was ∼142 MPa but the strength of Si3N4/Inconel joints increased from ∼9 MPa for directly bonded joints without interlayers to 53.5 MPa for joints with Mo and W interlayers.  相似文献   

15.
A novel CaO-Li2O-Al2O3-SiO2 (CLAS) glass was developed for the joining of porous Si3N4 and dense Si3N4. A multiphase interlayer consisting of CaAl2Si2O8, LiAlSi2O6 and CaSiO3 phases was formed in joint, which possessed matched CTE with the Si3N4 substrates. In addition, the infiltrated layer with bilayer structure in the porous Si3N4 substrate was observed. The effects of joining temperature and cooling rate on microstructure, phase evolution and shear strength of joints were studied carefully. The results showed that the kinds of precipitated phases remained invariable with the joining temperature increased, but the crystallinity in the interlayer was improved remarkably as the cooling rate reduced. The maximum shear strength of 45 MPa was obtained when the joining temperature and cooling rate were 1100 °C and 5 °C/min, respectively. Moreover, fracture during the shear test occurred mainly within porous Si3N4 side, indicating superior joining of dense Si3N4/glass-ceramic/porous Si3N4.  相似文献   

16.
The preparation and characterization of precursor derived Si–B–C–N ceramics with similar Si/C/N ratios but variable boron content are reported. The polymeric precursors were prepared via hydroboration of poly(methylvinylsilazane) using different BH3·SMe2/polymer stoichiometries. High temperature thermogravimetric analysis of as-pyrolysed ceramics as well as XRD studies of post-annealed samples display a retarding effect of boron on both crystallization of SiC and Si3N4 and stabilization of crystalline β-Si3N4.  相似文献   

17.
Mechanical and tribological properties of nanocomposites with silicon nitride matrix with addition of 1 and 3 wt% of various types of graphene platelets were studied. The wear behavior was observed by means of the ball-on-disk technique with a silicon nitride ball used as the tribological counterpart at room temperature in dry sliding. Coefficient of friction and specific wear rates were calculated and related to the damage mechanisms observed in the wear tracks. The measured properties were then assessed with respect to the type and volume fraction of the graphene additives. It is shown that addition of such amounts of carbon phases does not lower the coefficient of friction. Graphene platelets seem to be integrated into the matrix very strongly and they do not participate in lubricating processes. The best performance offers materials with 3 wt% of larger sized graphene, which have the highest wear resistance.  相似文献   

18.
For the development of a new wear resistant and chemically stable glass-ceramic glaze, the CaO–ZrO2–SiO2 system was studied. Compositions consisting of CaO, ZrO2, and SiO2 were used for frit, which formed a glass-ceramic under a single stage heat treatment in electric furnace. In the sintered glass-ceramic, wollastonite (CaSiO3) and calcium zirconium silicate (Ca2ZrSi4O12) were crystalline phases composed of surface and internal crystals in the microstructure. The internal crystal formed with nuclei having a composition of Ca1.2Si4.3Zr0.2O8. The CaO–ZrO2–SiO2 system showed good properties in wear and chemical resistance because the Ca2ZrSi4O12 crystals positively affected physical and mechanical properties.  相似文献   

19.
Cf–Si3N4 sandwich composites were prepared by gelcasting using α-Si3N4 powder, SiC-coated carbon fibers and sintering additives as starting materials. The microstructure and composition, dielectric properties of Cf–Si3N4 sandwich composites were investigated. SEM and EDS analysis results reveal that the SiC interphase could effectively overcome incompatibility between carbon fiber and silicon nitride matrix under the condition of pressure-less sintering at 1700 °C. The investigation of microwave absorbing property reveals that, compared with the Si3N4 ceramics, both the real (ε?ε?) and imaginary (ε??ε??) permittivity of Cf–Si3N4 sandwich composites show strong frequency dispersion characteristics at X-band. Microwave absorption ability of the Cf–Si3N4 sandwich composites are significantly enhanced compared with pure Si3N4 ceramic, and the reflection loss gradually decreases from −3.5 dB to −14.4 dB with the increase of frequency, while the pure Si3N4 ceramic keeps at −0.1 dB. Particularly, the relationship between permittivity of Cf–Si3N4 sandwich composites and frequency at X-band has been established through an equivalent RC circuit model. Results showed that both ε?ε? and ωε??ωε?? are inversely proportional to the frequency square ω2ω2, and the predicted results agree quite well with the measured data.  相似文献   

20.
A dense SiC nanowires-toughened α-Si3N4 coating was prepared using a two-step technique for protecting porous Si3N4 ceramic against mechanical damage, and effect of SiC nanowires content on microstructures and properties of the coating were investigated. XRD, SEM and TEM analysis results revealed that as-prepared coatings consisted of α-Si3N4, O'-Sialon, SiC nanowires and Y–Al–Si–O–N glass phase. Furthermore, Vickers hardness of the coated porous Si3N4 ceramics increased gradually with the increasing SiC nanowires content from 0 to 10 wt%, which is attributed to the gradual improvement in intrinsic elastic modulus (E), hardness (H) and H3/E2 of the coatings. But, when the SiC nanowires content was 15 wt%, the thickness of the coating became relatively thinner, so that its protective ability was weakened and Vickers hardness started to decrease accordingly. Meanwhile, the assistance of SiC nanowires enhanced fracture toughness of the coatings obviously because SiC nanowires in the coatings can produce various toughening mechanisms during mechanical damage. When the SiC nanowires content was 10 wt%, its fracture toughness reached the maximum value, which was 6.27 ± 0.05 MPa·m1/2.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号