共查询到20条相似文献,搜索用时 0 毫秒
1.
Polypropylene (PP) is widely used in many fields, such as automobiles, medical devices, office equipment, pipe, and architecture. However, its high brittle transformation temperature, low mechanical strength, dyeing properties, antistatic properties, and poor impact resistance, considerably limit its further applications. Nano‐ZnO treated by KH550 coupling agent and glass fibers (GFs) were introduced in order to improve the mechanical performance and flowability of PP in this research. The crystallization behavior and microstructure of nano‐ZnO/GFs/PP hybrid composites were analyzed by differential scanning calorimetry, transmission electron microscopy, and scanning electron microscopy. The effect of crystallization behavior on the mechanical properties of the nanocomposites was investigated and analyzed. The results indicated that nano‐ZnO surface‐coupled by KH550 could be uniformly dispersed in the PP matrix. The incorporation of nano‐ZnO and GFs resulted in increases of the crystallization temperature and crystallization rate of PP and a decrease of the crystallization degree. The introduction of nano‐ZnO and GFs also enhanced the tensile strength and impact toughness of the hybrid composites and improved their fluidity. Composites containing 2% of nano‐ZnO and 40% of GFs possessed the optimum mechanical properties. J. VINYL ADDIT. TECHNOL., 2010. © 2010 Society of Plastics Engineers 相似文献
2.
Functionally graded nano‐TiO2 epoxy matrix composites were successfully fabricated using a centrifugal method. In the preparation of the composite, the aggregation of nano‐TiO2 occurred during curing, which had a negative effect on the composite performance. To solve this problem, we introduced a silane coupling agent to modify the surface of the nano‐TiO2, thereby improving the performance and mechanical properties simultaneously. The modified nano‐TiO2 (s‐TiO2) had better dispersion in the epoxy resin, making it possible to produce depth gradients of the mechanical properties of functionally graded materials (FGMs). The s‐TiO2 was characterized with respect to functional groups, morphology, and chemical elements using transmission electron microscopy, X‐ray photoelectron spectroscopy, and Fourier‐transform infrared spectroscopy. The results show that a silane layer was successfully coated on the surface. Also, the gradients of the mechanical and permittivity properties of the FGM indicated that by modifying the surface of the nano‐filler, it is possible to fabricate nano‐filler‐reinforced epoxy matrix FGMs using a centrifugal method. POLYM. COMPOS., 35:557–563, 2014. © 2013 Society of Plastics Engineers 相似文献
3.
Nano‐CaCO3/homo‐PP composites were prepared by melt‐blending using twin‐screw extruder. The results show that not only the impact property but also the bending modulus of the system have been evidently increased by adding nano‐CaCO3. The nano‐CaCO3 particles have been dispersed in the matrix in the nanometer scale which was investigated by means of transmission electron microscopy (TEM). The toughening mechanism of nano‐CaCO3, investigated by means of dynamical mechanical thermal analysis (DMTA) and scanning electron microscopy (SEM), lies on that the nano‐CaCO3 particles take an action of initiating and terminating crazing (silver streak), which can absorb more impact energy than the neat PP. At the same time, the nano‐CaCO3 particles, as the nuclear, decrease the crystal size of PP, the results of which were investigated by means of polarized optical microscope (POM). © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2010 相似文献
4.
Kudzu fiber‐reinforced polypropylene composites were prepared, and their mechanical and thermal properties were determined. To enhance the adhesion between the kudzu fiber and the polypropylene matrix, maleic anhydride‐grafted polypropylene (MAPP) was used as a compatibilizer. A continuous improvement in both tensile modulus and tensile strength was observed up to a MAPP concentration of 35 wt %. Increases of 24 and 54% were obtained for tensile modulus and tensile strength, respectively. Scanning electron microscopy (SEM) showed improved dispersion and adhesion with MAPP. Fourier transform infrared (FTIR) spectroscopy showed an increase in hydrogen bonding with an increase in MAPP content. Differential scanning calorimetry (DSC) analysis indicated little change in the melting temperature of the composites with changes in MAPP content. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 85: 1961–1969, 2002 相似文献
5.
Lijing Han Changyu Han Junjia Bian Yijie Bian Haijuan Lin Xuemei Wang Huiliang Zhang Lisong Dong 《Polymer Engineering and Science》2012,52(7):1474-1484
Nano‐sized calcium carbonate (nano‐CaCO3)‐supported nucleating agent for poly(L ‐lactide) (PLLA) was prepared by supporting calcium phenylphosphonate (PPCa) on nano‐CaCO3 surface. The thermal properties of phenylphosphonic acid (PPOA) and nano‐CaCO3‐supported nucleating agent and its dispersion in PLLA matrix were investigated by differential scanning calorimetry and field emission scanning electron microscopy. The results indicated that the formation of nucleating agent supported on nano‐CaCO3 was attributed to the chemical reaction between nano‐CaCO3 and PPOA. The nano‐CaCO3‐supported nucleating agents were dispersed evenly in the PLLA matrix even with 5 wt% loading. The supported nucleating agent was added to PLLA to examine its nucleating ability for PLLA. The results of the investigation showed that the nano‐CaCO3‐supported nucleating agent exhibited higher nucleation ability compared to PPCa nucleating agent. POLYM. ENG. SCI., 2012. © 2012 Society of Plastics Engineers 相似文献
6.
In this study, various polypropylene (PP) nanocomposites were prepared by melt blending method. The effects of different spherical nanofillers, such as 50 nm CaCO3 and 20 nm SiO2, on the linear viscoelastic property, crystallization behavior, morphology and mechanical property of the resulting PP nanocomposites were examined. Rheological study indicated that coincorporation of nano‐SiO2 and nano‐CaCO3 favored the uniform dispersion of nanoparticles in the PP matrix. Differential scanning calorimeter (DSC) and polarizing optical microscopy (POM) studies revealed that the coincorporation of SiO2 and CaCO3 nanoparticles could effectively improve PP crystallizability, which gave rise to a lower supercooling temperature (ΔT), a shorter crystallization half‐life (t1/2) and a smaller spherulite size in comparison with those nanocomposites incorporating only one type of CaCO3 or SiO2 nanoparticles. The mechanical analysis results also showed that addition of two types of nanoparticles into PP matrix gave rise to enhanced performance than the nanocomposites containing CaCO3 or SiO2 individually. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011 相似文献
7.
An in situ deposition approach was used for the synthesis of nano‐CaSO4 and nano‐Ca3(PO4)2. The nanosize particles were confirmed with an X‐ray diffraction technique. Composites of polypropylene (PP) with 0.1–0.5 wt % nano‐ or commercial CaSO4 or nano‐Ca3(PO4)2 were prepared. The transition from the α phase to the β phase was observed for 0.1–0.3 wt % nano‐CaSO4/PP and nano‐Ca3(PO4)2/PP composites. This was confirmed by Fourier transform infrared. A differential scanning calorimetry analysis was carried out to determine the thermal behavior of the nanocomposites with increasing amounts of the nano‐CaSO4 and nano‐Ca3(PO4)2 fillers. Increases in the tensile strength and Young's modulus were observed up to certain loading and were followed by a decrease in the tensile strength. A continuous decrease in the elongation at break (%) was also observed for commercial CaSO4 and larger nano‐Ca3(PO4)2. A decrease in the mechanical properties after a certain loading might have been due to the agglomeration and phase transition of PP in the composites. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 103: 670–680, 2007 相似文献
8.
Polypropylene (PP) and nano‐calcium carbonate (CaCO3) composites were prepared by melt mixing in a corotating twin‐screw extruder. Transmission electron microscopy study and particle size analysis revealed the dispersion and the size distribution of CaCO3 in PP. With the increase of loading of filler, CaCO3 nanoparticles densely aggregated together and the dispersion of filler became bad. The fractal dimensions of the composites were determined using fractal concept. The fractal dimensions of D and Dk described the irregularities of the shape of an object and the distributions of particle populations, respectively. The D and Dk values were influenced by the content of filler, i.e., the D values increased, and the Dk values decreased with the increase of loading of filler. When the loading of filler was low, the values of D and Dk of PP composites differ slightly than the counterparts of PP/PP‐g‐MA (50 wt %) blend. For 20 wt %, they were almost identical. This fact showed that the fractal dimension was correlated with the dispersion. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008 相似文献
9.
10.
Mohammadhadi Abbasi Saied Nouri Khorasani Rohallah Bagheri Javad Moftakharian Esfahani 《Polymer Composites》2011,32(11):1718-1725
In this study, microcellular foaming of low‐density polyethylene (LDPE) using nano‐calcium carbonate (nano‐CaCO3) were carried out. Nanocomposite samples were prepared in different content in range of 0.5–7 phr nano‐CaCO3 using a twin screw extruder. X‐ray diffraction and scanning electron microscopy (SEM) were used to characterize of LDPE/nano‐CaCO3 nanocomposites. The foaming was carried out by a batch process in compression molding with azodicarbonamide (ADCA) as a chemical blowing agent. The cell structure of the foams was examined with SEM, density and gel content of different samples were measured to compare difference between nanocomposite microcellular foam and microcellular foam without nanomaterials. The results showed that the samples containing 5 phr nano‐CaCO3 showed microcellular foam with the lowest mean cell diameter 27 μm and largest cell density 8 × 108 cells/cm3 in compared other samples. POLYM. COMPOS., 2011. © 2011 Society of Plastics Engineers 相似文献
11.
Fabrication and characterization of in situ synthesized iron oxide‐modified polyimide nanoweb by needleless electrospinning 下载免费PDF全文
A series of poly(amic acid) (PAA) solutions were prepared by sol–gel condensation of 4,4′‐oxydianiline (ODA) and 4,4′‐oxydiphthalic anhydride (ODPA), containing various wt % (5, 10, 15) of an iron oxide precursor, that is, tris(acetylacetonato)iron(III) complex. The resulting PAA solutions were electrospun at 78 kV and collected as webs of nonwoven nanofibers of diameter ~60–70 nm and subsequently converted to iron oxide‐modified polyimide (PI) nanofibers by slow thermal imidization. Aminopropyl triethoxysilane (APTES) and tetraethoxyorthosilicate (TEOS) were used as coupling agent and silica precursor, respectively, to enhance the compatibility between organic polymer matrix and inorganic moieties. SEM images reveal smooth and defect‐free surface morphologies of the nanofibers. Superparamagnetic properties of the nanofibers were revealed by vibrating sample magnetometer (VSM). FT‐infrared spectroscopy (IR), powder XRD, thermogravimetric analysis, and differential scanning calorimetry were employed to systematically characterize material structural properties, thermal stabilities, etc. Nanowebs showed excellent thermal stability around 446°C, with a glass transition temperature around 270°C. The above study demonstrates a good example for fabrication of highly thermally stable bead‐free nanofiber webs by needleless electrospinning. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 40432. 相似文献
12.
Three commercially available silane, titanate and aluminate based coupling agents were used to pretreat nano‐SiO2 for the preparation of nylon‐6/nano–SiO2 composites via in situ polymerization. The interphases formed in different composite systems and their influence on material properties were investigated. Results indicated that the interfacial interactions differed between composite systems, whereas rigidity and toughness of composites were all improved by addition of pretreated silicas at an optimal content of 4.3 wt%. The presence of pretreated silicas did not have a distinct influence in the non‐isothermal crystallization behaviour of the nylon matrix. The composites containing pretreated silicas had slightly higher dynamic viscosities and superior storage moduli at high frequency, compared with neat nylon‐6. Copyright © 2003 Society of Chemical Industry 相似文献
13.
Takeharu Tajima Seiichiro Ueno Naoyasu Yabu Sachiko Sukigara Frank Ko 《应用聚合物科学杂志》2011,122(1):150-158
Poly‐γ‐glutamic acid (γ‐PGA) is a natural polymer that is widely recognized as a component in the viscous filaments of fermented soybean (natto). γ‐PGA is known for its superior biodegradability, biocompatibility and water retention characteristics. Crosslinked γ‐PGA is commonly used as a hydrogel, but it is not used in the fiber form because it is soluble in water. In this study, we demonstrate the use of γ‐PGA‐Na for production of water insoluble γ‐PGA nanofibers by electrospinning. This result was accomplished using an aqueous solvent containing 10 wt % of an oxazoline component polymer as the crosslinking agent and by heat treatment. The crosslinking reaction was evaluated by solid‐state NMR. The nanofiber webs showed a high level of moisture absorption capability while retaining their fibrous shape. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011 相似文献
14.
Modification of isotactic polypropylene (iPP) with two nucleation agents, namely 1,3:24‐bis(3,4‐dimethylobenzylideno) sorbitol (DMDBS) (α‐nucleator) and N, N′‐dicyclohexylo‐2,6‐naphthaleno dicarboxy amide (NJ) (β‐nucleator), leads to significant changes of the structure, morphology and properties. Both nucleating agents cause an increase in the crystallization temperature. The efficiency determined in a self‐nucleation test is 73.4 % for DMDBS and 55.9 % for NJ. The modification with NJ induces the creation of the hexagonal β‐form of iPP. The addition of DMDBS lowers the haze of iPP while the presence of NJ increases the haze. Copyright © 2004 Society of Chemical Industry 相似文献
15.
Fotini Petrakli Michalis Arkas Athena Tsetsekou 《Journal of the American Ceramic Society》2018,101(8):3508-3519
In this work, stable aqueous suspensions of nano‐boehmite were developed through a hybrid wet‐chemical route that uses hyperbranched dendritic poly(ethylene)imine (PEI) as template material for boehmite formation aiming at the development of a deagglomerated α‐alumina nanopowder after calcination. The method involves firstly the interaction between the Al precursor and PEI followed by the hydrolysis and polycondensation reactions. The study was aiming to investigate the effect of solids content and pH during reactions on both the stability of the final suspension and the morphology of the resulting nanocrystals. For this purpose, the suspensions were evaluated through viscosity measurements, zeta potential analyses, FT‐IR, DLS and sedimentation studies, whereas after the proper centrifugation, drying, and calcination steps, the as‐received nanocrystals were evaluated through SEM, TEM and XRD studies. In addition, the boehmite nanopowder was studied using Thermogravimetric and Differential Thermal Analysis, whereas its sinterability was evaluated by dilatometric measurements. The investigation showed that the conditions employed affect greatly both the morphology of nanocrystals as well as the dispersion and the stability of the suspensions. The boehmite suspension with the optimum dispersion and stability can lead, after calcination at 1050°C, to a fine deagglomerated α‐alumina nanopowder with a mean size at about 10 nm. 相似文献
16.
Zishou Zhang Chunyan Chen Chunguang Wang Zhang Junping Kancheng Mai 《Polymer International》2010,59(9):1199-1204
In order to increase the isotactic content of β‐nucleated polypropylene (β‐iPP) and decrease the cost of its production, the investigation and development of novel highly efficient β‐nucleators are important issues. Nano‐CaCO3 was used as a support to prepare a supported β‐nucleator, nano‐CaCO3‐supported calcium pimelate. Fourier transform infrared spectral analysis shows that an in situ chemical reaction takes place between nano‐CaCO3 and pimelic acid. Differential scanning calorimetry results indicate that the crystallization and melting temperatures of β‐phase in supported β‐nucleator‐nucleated iPP are higher than those of calcium pimelate‐nucleated iPP. The β‐nucleating ability of the supported β‐nucleator is little influenced by the cooling rate and crystallization temperature over a wide range. The decreased content of pimelic acid in the supported β‐nucleator slightly decreases the crystallization temperature of iPP but it has no influence on the content of β‐phase in nucleated iPP. A novel supported β‐nucleator has been successfully synthesized via pimelic acid supported on the surface of CaCO3. The crystallization temperature of iPP and melting temperature of β‐phase in iPP nucleated using the supported β‐nucleator are higher than those of iPP nucleated using calcium pimelate. The concept of a supported nucleator will provide a new way to increase the efficiency of polymer additives and to decrease the amounts of them that need to be used by using nanoparticles as supports. Copyright © 2010 Society of Chemical Industry 相似文献
17.
In this work, nano‐CaCO3 was used to improve the foamability of carbon fiber (CF)/polypropylene (PP) composite in solid‐state foaming using supercritical CO2. The CF content was maintained at 15 wt% and four concentrations of nano‐CaCO3 content, 1, 3, 5 and 8phr, were used. The surface of nano‐CaCO3 was firstly treated by silane coupling agent. By the way, the properties of the nano‐composites with various nano‐CaCO3 contents were analyzed by scanning electron microscope (SEM), differential scanning calorimeter (DSC), and torque rheometer. Before foaming, the gas absorption experiment was done using gravimetric method. Concerning on determination of the foaming conditions, it is found that 175°C and 60s were suitable as foaming temperature and time. Furthermore, we can also find that the foamed composites with 3phr nano‐CaCO3 showed the smallest mean cell diameter and largest cell density compared with the other nano‐CaCO3 contents under the given saturation condition. In addition, the mean cell diameter decreased while cell density increased as saturation pressure increased because of the higher gas solubility in the composites. When the saturation pressure was 25MPa, the mean cell diameter and cell density with 3phr nano‐CaCO3 were 17μm and 2.20×107cells/cm3, respectively. POLYM. COMPOS., 35:1723–1735, 2014. © 2013 Society of Plastics Engineers 相似文献
18.
Textiles, with appropriate light absorbers and suitable finishing methods, can be used as ultraviolet (UV) protection materials. In this study, we investigated the effects of nano‐TiO2 particles on the UV‐protective and structural properties of polypropylene (PP) textile filaments. Master batches of PP/TiO2 nanoparticles were prepared by melt compounding before spinning, and filaments incorporating 0.3, 1, and 3% TiO2 nanoparticles were spun in a pilot melt‐spinning machine. The structural properties of the nanocomposite fibers were analyzed with scanning electron microscopy, X‐ray diffractometry, differential scanning calorimetry, and tensile tests. The UV‐protection factor was determined to evaluate the UV‐protective properties of the filaments. In conclusion, although the structure and mechanical properties of the nanocomposite filaments were slightly affected by the addition of nano‐TiO2, the UV‐protective properties of the PP filaments improved after treatment with nano‐TiO2, and the nanocomposite filaments exhibited excellent UV protection. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2010 相似文献
19.
Tursun Abdiryim Aminam Ubul Ruxangul Jamal Yuchuan Tian Tunsagul Awut Ismayil Nurulla 《应用聚合物科学杂志》2012,126(2):697-705
Polyaniline/nano‐TiO2 composites with the content of nano‐TiO2 varying from 6.2 wt % to 24.1 wt % were prepared by using solid‐state synthesis method at room temperature. The structure and morphology of the composites were characterized by the Fourier transform infrared (FTIR) spectra, ultraviolet‐visible (UV–vis) absorption spectra, X‐ray diffraction (XRD), scanning electron microscopy (SEM), and transmission electron microscopy (TEM). The electrochemical performances of the composites were investigated by galvanostatic charge–discharge measurement, cyclic voltammetry (CV), and electrochemical impedance spectroscopy (EIS). The results from FTIR and UV–vis spectra showed that the composites displayed higher oxidation and doping degree than pure PANI. The XRD and morphological studies revealed that the inclusion of nano‐TiO2 particles hampered the crystallization of PANI chains in composites, and the composites exhibited mixed particles from free PANI particles and the nano‐TiO2 entrapped PANI particles. The galvanostatic charge–discharge measurements indicated that the PANI/nano‐TiO2 composites had higher specific capacitances than PANI. The composite with 6.2 wt % TiO2 had the highest specific capacitance among the composites. The further electrochemical tests on the composite electrode with 6.2 wt % TiO2 showed that the composite displayed an ideal capacitive behavior and good rate ability. © 2012 Wiley Periodicals, Inc. J Appl Polym Sci, 2012 相似文献
20.
The crystalline morphology and dynamical crystallization of antibacterial polypropylene composite and pure polypropylene were investigated via differential scanning calorimeter (DSC), wide angle X‐ray diffraction (WAXD), and real‐time hot‐stage optical microscopy (OM). The results reveal that the crystalline morphology of antibacterial PP composites changes with variations of the crystallization conditions and compositions. The crystalline phase consists of both α‐PP and β‐PP crystals. The content of β‐PP decreases with the increase in antibacterial agent content and cooling rate. With the addition of β‐nucleating agent, the morphologies of all dynamically crystallized antibacterial PP composites show no obvious spherulitic morphology, and the decrease of crystal perfection and the increase of nucleation density of antibacterial PP composite system could be observed. With the increase of antibacterial agent content, the overall crystallization rates of the antibacterial PP composite increase dramatically, while the content of β‐PP in all antibacterial PP composite decrease distinctly under given cooling conditions. These results can be explained by the interruptive effect of antibacterial agent on interactions of β‐nucleating agent components and the obstructing effect of antibacterial agent on the mobility of PP chains in melts. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008 相似文献