首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
    
The organization of conjugated polyelectrolytes (CPEs) interacting with biomolecules sets conditions for the biodetection of biological processes and identity, through the use of optical emission from the CPE. Herein, a well‐defined CPE and its binding to DNA is studied. By using dynamic light scattering and circular dichroism spectroscopy, it is shown that the CPE forms a multimolecule ensemble in aqueous solution that is more than doubled in size when interacting with a small DNA chain, while single chains are evident in ethanol. The related changes in the fluorescence spectra upon polymer aggregation are assigned to oscillator strength redistribution between vibronic transitions in weakly coupled H‐aggregates. An enhanced single‐molecule spectroscopy technique that allows full control of excitation and emission light polarization is applied to combed and decorated λDNA chains. It is found that the organization of combed CPE–λDNA complexes (when dry on the surface) allows considerable variation of CPE distances and direction relative to the DNA chain. By analysis of the polarization data energy transfer between the polymer chains in individual complexes is confirmed and their sizes estimated.  相似文献   

2.
    
π‐conjugated polymers find a range of applications in electronic devices. These materials are generally highly disordered in terms of chain length and chain conformation, besides being influenced by a variety of chemical and physical defects. Although this characteristic can be of benefit in certain device applications, disorder severely complicates materials analysis. Accurate analytical techniques are, however, crucial to optimising synthetic procedures and assessing overall material purity. Fortunately, single‐molecule spectroscopic techniques have emerged as an unlikely but uniquely powerful approach to unraveling intrinsic material properties from the bottom up. Building on the success of such techniques in the life sciences, single‐molecule spectroscopy is finding increasing applicability in materials science, effectively enabling the dissection of the bulk down to the level of the individual molecular constituent. This article reviews recent progress in single molecule spectroscopy of conjugated polymers as used in organic electronics.  相似文献   

3.
    
Two conjugated polymers (CPs) with various compositions of phenylene and benzoselenadiazoben (BSD) are synthesized to have a special emitting property; different fluorescence colors in solution and in the solid states, allowing the resulting conjugated polymer dots (Pdots) to emit different fluorescence colors upon their size variation. The photophysical property of such different‐sized Pdots is investigated using fluorescence spectra and fluorescence lifetimes. A decrease in the fluorescence lifetime of Pdots is observed with an increase in the size of Pdots, caused by quantitative change in energy transfer from phenylene (energy donor) to the BSD unit (energy acceptor). The results provide that any CP can be used for the fabrication of Pdots with size‐tunable emission, as long as the CP shows different emissions according to its phases. Such emission of Pdots can even be observed when in the solid solution in polymer matrix, which emits different fluorescence colors depending on the size of embedded Pdots in the polymer matrix.  相似文献   

4.
    
Conjugated polymers (CPs) are promising materials for fluorescence imaging application. However, a significant problem in this field is the unexplained abnormally low fluorescence brightness (or number of fluorescence photons detected per one excitation photon) exhibited by most of CP single chains in solid polymer hosts. Here it is shown that this detrimental effect can be fully avoided for short chains of polyfluorene‐bis‐vinylphenylene (PFBV) embedded in a host polymer matrix of PMMA, if the conjugated backbone is insulated by cyclodextrin rings to form a polyrotaxane (PFBV‐Rtx). Fluorescence kinetics and quantum yields are measured for the polymers in liquid solutions, pristine films, and solid PMMA blends. The fluorescence brightness of PFBV‐Rtx single chains dispersed in a solid PMMA is very close to that expected for a chain with 100% fluorescence quantum yield, while the unprotected PFBV chains of the same length possess 4 times lower brightness. Despite this, the fluorescence decay kinetics are the same for both polymers, suggesting the presence of static or ultrafast fluorescence quenching in the unprotected polymer. About 80% of an unprotected PFBV chain is estimated to be completely quenched. The hypothesis is that the cyclodextrin rings prevent the quenching by working as ‘bumpers’ reducing the mechanical forces applied by the host polymer to the conjugated backbone and help retaining its conformational freedom. While providing a recipe for making CP fluorescence bright at the single‐molecule level, these results identify a lack of fundamental understanding in the community of the influence of the environment on excited states in conjugated materials.  相似文献   

5.
6.
7.
8.
An electronic conductance with small fluctuations, which is stipulated in single-molecule junctions, is necessary for the precise control of single-molecule devices. However, the suppression of conductance fluctuations in conventional molecular junctions is intrinsically difficult because the fluctuations are related to the contact fluctuations and molecular motion. In the present study involving experimental and theoretical investigations, it is found that covering a single π-conjugated wire with an α-cyclodextrin molecule is a promising technique for suppressing conductance fluctuations. The conductance histogram of the covered molecular junction measured with the scanning tunneling microscope break-junction technique shows that the conductance peak for the covered junction is sharper than that of the uncovered junction. The covering technique thus has two prominent effects: the suppression of intramolecular motion, and the elimination of intermolecular interactions. Theoretical calculations of electronic conductance clearly support these experimental observations.  相似文献   

9.
10.
    
Motor protein functions like adenosine triphosphate (ATP) hydrolysis or translocation along molecular substrates take place at nanometric scales and consequently depend on the amount of available thermal energy. The associated rates can hence be investigated by actively varying the temperature conditions. In this article, a thermally controlled magnetic tweezers (MT) system for single‐molecule experiments at up to 40 °C is presented. Its compact thermostat module yields a precision of 0.1 °C and can in principle be tailored to any other surface‐coupled microscopy technique, such as tethered particle motion (TPM), nanopore‐based sensing of biomolecules, or super‐resolution fluorescence imaging. The instrument is used to examine the temperature dependence of translocation along double‐stranded (ds)DNA by individual copies of the protein complex AddAB, a helicase‐nuclease motor involved in dsDNA break repair. Despite moderately lower mean velocities measured at sub‐saturating ATP concentrations, almost identical estimates of the enzymatic reaction barrier (around 21–24 kBT) are obtained by comparing results from MT and stopped‐flow bulk assays. Single‐molecule rates approach ensemble values at optimized chemical energy conditions near the motor, which can withstand opposing loads of up to 14 piconewtons (pN). Having proven its reliability, the temperature‐controlled MT described herein will eventually represent a routinely applied method within the toolbox for nano‐biotechnology.  相似文献   

11.
12.
    
The growing demand for analysis of the genomes of many species and cancers, for understanding the role of genetic variation among individuals in disease, and with the ultimate goal of deciphering individual human genomes has led to the development of non‐Sanger reaction‐based technologies towards rapid and inexpensive DNA sequencing. Recent advancements in new DNA sequencing technologies are changing the scientific horizon by dramatically accelerating biological and biomedical research and promising an era of personalized medicine for improved human health. Two single‐molecule sequencing technologies based on fluorescence detection are already in a working state. The newly launched and emerging single‐molecule DNA sequencing approaches are reviewed here. The current challenges of these technologies and potential methods of overcoming these challenges are critically discussed. Further research and development of single‐molecule sequencing will allow researchers to gather nearly error‐free genomic data in a timely and inexpensive manner.

  相似文献   


13.
14.
    
The fabrication and characterization of a metallized nanopore structure for the sensing of single molecules is described. Pores of varying diameters (>10 nm) are patterned into free‐standing silicon nitride membranes by electron‐beam lithography and reactive ion etching. Structural characterization by transmission electron microscopy (TEM) and tomography reveals a conical pore shape with a 40° aperture. Metal films of Ti/Au are vapor deposited and the pore shape and shrinking are studied as a function of evaporated film thickness. TEM tomography analysis confirms metalization of the inner pore walls as well as conservation of the conical pore shape. In electrical measurements of the transpore current in aqueous electrolyte solution, the pores feature very low noise. The applicability of the metallized pores for stochastic sensing is demonstrated in real‐time translocation experiments of single λ‐DNA molecules. We observe exceptionally long‐lasting current blockades with a fine structure of distinct current levels, suggesting an attractive interaction between the DNA and the PEGylated metallic pore walls.  相似文献   

15.
An aptamer is a specific oligonucleotide sequence that spontaneously forms a secondary structure capable of selectively binding an analyte. An aptamer's conformation is the key to specific binding of a target molecule, even in the case of very closely related targets. Nanopores are a sensitive tool for the single-molecule analysis of DNA, peptides, and proteins transporting through the pore. Herein, a single α-hemolysin natural nanopore is utilized to sense the conformational changes of an adenosine 5'-triphosphate (ATP)-binding aptamer (ABA). The known DNA sequence of the ABA is used as a model to develop real-time monitoring of molecular conformational changes that occur by binding targets. The native, folded ABA structure has a nanopore unfolding time of 4.17 ms, compared with 0.29 ms for the ABA:ATP complex. A complementary 14-mer strand, which binds the ABA sequence in the key nucleic acids responsible for folding, forms linear duplex DNA, resulting in a nanopore transit time of 0.50 ms and a higher capture probability than that of the folded ABA oligomer. Competition assays between the ABA:ATP and ABA:reporter complexes are carried out, and the results suggest that the ABA:ATP complex is formed preferentially. The nanopore allows for the detection of an ABA in its folded, ATP-bound, and linear conformations.  相似文献   

16.
17.
18.
    
An aptamer is a specific oligonucleotide sequence that spontaneously forms a secondary structure capable of selectively binding an analyte. An aptamer’s conformation is the key to specific binding of a target molecule, even in the case of very closely related targets. Nanopores are a sensitive tool for the single‐molecule analysis of DNA, peptides, and proteins transporting through the pore. Herein, a single α‐hemolysin natural nanopore is utilized to sense the conformational changes of an adenosine 5’‐triphosphate (ATP)‐binding aptamer (ABA). The known DNA sequence of the ABA is used as a model to develop real‐time monitoring of molecular conformational changes that occur by binding targets. The native, folded ABA structure has a nanopore unfolding time of 4.17 ms, compared with 0.29 ms for the ABA:ATP complex. A complementary 14‐mer strand, which binds the ABA sequence in the key nucleic acids responsible for folding, forms linear duplex DNA, resulting in a nanopore transit time of 0.50 ms and a higher capture probability than that of the folded ABA oligomer. Competition assays between the ABA:ATP and ABA:reporter complexes are carried out, and the results suggest that the ABA:ATP complex is formed preferentially. The nanopore allows for the detection of an ABA in its folded, ATP‐bound, and linear conformations.  相似文献   

19.
20.
    
The detection and quantification of ionizing radiation damage to DNA at a single-molecule level by atomic force microscopy (AFM) is reported. The DNA damage-detection technique combining supercoiled plasmid relaxation assay with AFM imaging is a direct and quantitative approach to detect gamma-ray-induced single- and double-strand breaks in DNA, and its accuracy and reliability are validated through a comparison with traditional agarose gel electrophoresis. In addition, the dependence of radiation-induced single-strand breaks on plasmid size and concentration at a single-molecule level in a low-dose (1 Gy) and low-concentration range (0.01 ng microL(-1)-10 ng microL(-1)) is investigated using the AFM-based damage-detection assay. The results clearly show that the number of single-strand breaks per DNA molecule is linearly proportional to the plasmid size and inversely correlated to the DNA concentration. This assay can also efficiently detect DNA damage in highly dilute samples (0.01 ng microL(-1)), which is beyond the capability of traditional techniques. AFM imaging can uniquely supplement traditional techniques for sensitive measurements of damage to DNA by ionizing radiation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号