首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Glass ceramics were synthetized using Cr2O3 and CaF2 as additives, and their structure, crystal growth behavior, and physicochemical properties were investigated. The results showed that an excessive amount of Cr2O3 leads to the formation of a spinel structure in the glass matrix and an increase in the number of Q3Si units. The addition of CaF2 promoted the decomposition of Q2Si into Q1Si and Q3Si. Compared with the sample with Cr2O3 alone, the addition of CaF2 helped reduce the glass transition and crystallization temperatures, forming sharper crystallization peaks. Although CaF2 increased the activation energy of crystallization, it increased the degree of crystallinity and Avrami parameter (2.019). In terms of the microstructure, the sample added with CaF2 formed a snowflake-like structure with a spinel core. An excessive amount of spinel reduced the strength of the samples. The samples (1.5Cr2O3-3.5CaF2) exhibited a maximum flexural strength of 149.85 MPa and a good chemical resistance.  相似文献   

2.
Diopside is the main crystalline phase in silicate materials such as ceramics and glass-ceramics. Herein, the effect of Cr2O3 on the microstructure and crystallization behavior of synthetic diopside, as well as the solubility of Cr2O3 in diopside is discussed. Samples were prepared by the melting method and characterized by X-ray diffraction, scanning electron microscopy, energy dispersive spectrometry, and confocal laser scanning microscopy. Results show that the maximum achievable solubility of Cr2O3 in diopside is between 1% and 3% by weight, and that the magnesiachrome spinel formed by Cr2O3 can act as a nucleating agent for the diopside phase. Glass ceramics was prepared by synthesis slag which simulates the chromium-containing waste. The activation energy of crystallization is 274 KJ/mol and Avrami parameter is 3.23. The leaching behavior of glass ceramics was studied. Additionally, the effect of Cr2O3 on the mechanisms of phase change were discussed. The study provides a theoretical basis for the preparation of chromium containing waste-based silicate materials with diopside as the main crystalline phase.  相似文献   

3.
Li2O–Al2O3–SiO2 glass with CaO, MgO and TiO2 additive were investigated. With more CaO + MgO addition, the crystallization temperature (Tp) and the value of Avrami constant (n) decreased, the activation energy (E) increased. The mechanism of crystallization of the glass ceramics changed from bulk crystallization to surface crystallization. With more TiO2 addition, the crystallization temperature decreased, E and n had a little change. The crystallization of the glass ceramics changed from surface crystallization to two-dimensional crystallization. Plate-like, high mechanical properties spodumene-diopside glass ceramics were obtained. The mechanical properties related with crystallization and morphology of glass ceramics.  相似文献   

4.
The effects of different kinds of nucleating agents on crystallization, microstructure and performances of Magnesium Aluminosilicate (MgO-Al2O3-SiO2, MAS) glass-ceramics which were fabricated by melting method in this study. Also, this paper systematically investigated the mechanism of glass stability, crystallization kinetics and element distribution of MAS glass-ceramics. Herein, we used three kinds of nucleating agents, which was TiO2, ZrO2 and composite nucleating agent (TiO2/ZrO2). The results showed after the doping of nucleating agent, the content of α-cordierite was increased, the stability and crystallization kinetics of glass was changed, the precipitated crystal phase was finer and more compact. Wherein, the sample with composite nucleating agents (TiO2, ZrO2) has the best performance due to the highest contents of α - cordierite, uniform distribution of elements without agglomeration in the crystal phase and the most compact structure, whose Vickers hardness and bending strength can reach 9.70 GPa and 312 MPa, respectively.  相似文献   

5.
田清波  王玥  尹衍升 《陶瓷》2005,(12):21-23
应用扫描电子显微镜(SEM)和X射线衍射(XRD)等技术研究了ZnO、Fe2O3、ZrO2对SiO2-MgO-Al2O3-F玻璃陶瓷析晶组织形态的影响。结果表明:在所研究的玻璃体系中,不同氧化物加入后都促进了主晶相氟云母晶体的析出。但不同氧化物对析出晶体的形貌影响不同,当基础玻璃中添加了质量分数为2.0%的ZnO时,形成片状氟云母晶体和颗粒状莫来石相;当添加2.0%的Fe2O3后,大量均匀细小的针状氟云母晶体和块状FeFeO4晶体析出;而当添加4.0%的ZrO2后,除了氟云母和莫来石析出外,粒状ZrO2晶体夹杂在氟云母晶体之间均匀析出。  相似文献   

6.
《Ceramics International》2016,42(16):18453-18458
(Ba, Sr)TiO3-Al2O3-SiO2 glass ceramic system with various SiO2/Al2O3 ratios was investigated by X-ray diffractometry (XRD), scanning electron microscopy (SEM), dielectric spectroscopy and impedance spectroscopy. The XRD results demonstrated that the proper SiO2/Al2O3 ratio could promote the crystallization of the major crystalline phase from the glass matrix. The dielectric property investigations showed that the dielectric constant passes through a maximum value while the dielectric breakdown strength has a minimum value with increasing SiO2/Al2O3 ratio. Meanwhile, the complex impedance analyses suggest the resistance of the glass-crystal interface rapidly decreases and the capacitance of the crystal slightly decreases with the increase of SiO2/Al2O3 ratio. The relaxation mechanisms of the (Ba, Sr)TiO3 glass ceramics changed from localized relaxation to long range conductivity as the SiO2/Al2O3 ratio was increased from 1.43 to 1.83. The variations in the dielectric response and the activation energy of the glass-crystal interface in the (Ba, Sr)TiO3 glass ceramics with the ratio of 2.40 could be attributed to the crystallization of fresnoite phase.  相似文献   

7.
The crystallization behavior, microstructure, crystalline phases, microhardness, coefficient of thermal expansion (CTE), and wetting behavior of Nd2O3-Al2O3-SiO2 (NAS) glass ceramics with different TiO2 content were investigated. The results show that the content of crystals increases and the size of crystals decreases with the increase of TiO2 content. Moreover, the formation of Nd2SiO5 leads to the increase and the precipitation of Al6Si2O13 results in the decrease in the CTE value of NAS glass ceramics. As a result, the CTE of NAS glass ceramics can be controlled in the range of 4.2–9.2 × 10−6/℃. These values are suitable for matching bonding to most ceramics with different CTE. Indeed, contact angle measurement demonstrates that the NAS glasses with 3 %, 6 % and 9 % TiO2 possess excellent wettability on the Al2O3, ZrO2 and zirconia toughened alumina (ZTA) ceramic, respectively.  相似文献   

8.
The effect of ZnO/K2O (Z/K) ratio on the crystallization sequence and microstructure of lithium disilicate (Li2Si2O5: LS2) glass-ceramics was carefully investigated for the SiO2-Li2O-K2O-ZnO-P2O5 system. The Z/K ratios of precursor glasses were varied from 0 to 3.5 while the nucleating agent of P2O5 and glass modifiers of ZnO plus K2O were fixed to have 1.5 and 4.5 mol% relative to LS2, respectively. For the samples prepared by two-stage heat treatments of 500 °C for 1 h and 800 °C for 2 h in air, the LS2 nucleation rate was increased with increasing the Z/K ratio due to the variation in crystallization sequence from type II (Li2SiO3: LS) to type I (LS + LS2) in addition to an amorphous phase separation in base glass. Consequently, with increasing the Z/K ratio, the LS2 crystalline phase within the glass matrix continuously changed from larger acicular ones to smaller equiaxed ones.  相似文献   

9.
The influences of atmosphere during processes of melting and heat treatment, heat treatment temperature, Fe3O4 content and basicity on the magnetic properties of magnetite-based glass ceramics were investigated. For sample containing 20 % Fe3O4 melted in different atmospheres, the highest saturation magnetisation was realized in 20vol% air + 80 vol% Ar, due to the fact that ratio of Fe3+ to Fe2+ in melt obtained in this atmosphere was close to 2. However, it was found that the coercivity of glass ceramics was not affected by the melting atmosphere. A high sintering temperature led to the decrease of saturation magnetisation and the increase of coercivity. As increasing Fe3O4 content, the main crystal phase transformed from CaSiO3 to CaFe0.6Al1.3Si1.08O6 and finally to magnetite phase, accompanied by the increase of saturation magnetisation and coercivity. In addition, the increase of basicity caused the decrease of saturation magnetisation and the increase of coercivity.  相似文献   

10.
The phase structure and magnetic properties of magnetite-based glass-ceramics obtained by crystallization of Fe-containing boroaluminosilicate glass melts are presented. The use of Cr2O3 as nucleating agent generated magnetite configurations showing a complex temperature dependence of the relaxation of the remanent magnetization. Specifically, the expected decrease in time of the remanent magnetization occurs only in a limited temperature range, whereas it increases at low and high temperatures (upward relaxation). We tentatively attribute these effects to the complex spin structure of the tiny magnetite nanoparticles, their complex size distribution and the interplay between the relaxation mechanisms in different temperature ranges.  相似文献   

11.
Al2O3/ZrO2 supersaturated solid solution micro-powders (AZ-SSP) with three components were successfully obtained by combustion synthesis assisted rapid water cooling, and their nanoprecipitation mechanism and microstructure evolution were studied by phase field simulation and hot-press sintering. The results show that AZ-SSP could be used to fabricate Al2O3/ZrO2 nanocomposite ceramics (AZNC) with intragranular-intercrystalline microstructures by high-density nanoprecipitation, consistent with microstructures of heat-treated AZ-SSP via the phase field simulation. There were three simulated nanostructures of spherical and elongated particles in A57Z-SSP or A15Z-SSP and interlocking structures in A36Z-SSP. The submicro-crystals of A57ZNC and A15ZNC contain high-density nano- and supra-nano-particles, and the fracture toughness of these two ceramics can reach up to 10.37 ± 0.37 MPa·m1/2 and 12.63 ± 0.36 MPa·m1/2, respectively. Hence, the preparation method of ultra-fine structures by supersaturated solid solution has far-reaching guiding significance for various nanoceramics.  相似文献   

12.
This study focused on the glass forming, crystallization, and physical properties of ZnO doped MgO-Al2O3-SiO2-B2O3 glass-ceramics. The results show that the glass forming ability enhances first with ZnO increasing from 0 to 0.5 mol%, and then weakens with further addition of ZnO which acted as network modifier. No nucleating agent was used and the crystallization of studied glasses is controlled by a surface crystallization mechanism. The predominant phase in glass-ceramics changed from α-cordierite to spinel/gahnite as ZnO gradually replaced MgO. The phase type did not change; however, the crystallinity and grain size in glass-ceramics increased when the glasses were treated from 1030 °C to 1100 °C. The introduction of ZnO can improve the thermal, mechanical, and dielectric properties of the glass-ceramics. The results reveal a rational mechanism of glass formation, crystal precipitation, and evolution between structure and performance in the xZnO-(20-x)MgO-20Al2O3-57SiO2-3B2O3 (0 ≤ x ≤ 20 mol%) system.  相似文献   

13.
Influence of various intermediate oxides on thermal, structural and crystallization kinetics of 30BaO–40SiO2–20B2O3–10A2O3 (A = Y, La, Al, Cr) glasses has been studied. The highest glass transition temperature (Tg) with high thermal stability is observed in Y2O3 containing glasses as compared to other glasses. The thermal expansion coefficient (TEC) increases with increasing heat treatment duration in all the glasses. The maximum increase in TEC is observed in Cr2O3 containing glass ceramics. FTIR study showed that transmission bands due to silicate and borate chains become sharper with splitting after heat treatment. A selected glass sample (BaCr) has been tested for interaction and adhesion with Crofer 22 APU interconnect material for its application as a sealant in solid oxide fuel cell.  相似文献   

14.
The crystallization, microstructure, microhardness and theoretical machinability have been investigated by DTA, XRD, SEM and Microhardness Indenter of resulting glass-ceramics. Two distinct crystallization exotherms in the DTA curve are observed and resolved. The first peak corresponds to the initial formation of potassium fluorophlogopite and the second is due to the formation of barium fluorophlogopite. The activation energy for precipitation of each crystalline phase has been evaluated, and the crystallization mechanism has been studied. DTA analyses were conducted at different heating rates and the activation energy was determined graphically from Kissinger and Ozawa equation. The average activation energy is calculated as 276 KJ/mol for the first and 366 KJ/mol for the second crystallization peak. The Avrami exponent for first and second crystallization peak temperature determined by Augis and Bennett method is found to be 3 and 3.9, respectively. The results indicate that the growth of mica is a two and three dimensional process, controlled by the crystal-glass interface reaction. The Vicker's hardness decreased steadily at intermediate heat treatment temperature with the formation of barium and potassium fluorophlogopite phase, but the decrease in hardness is more rapid at higher temperature with the development of an interconnected ‘house of cards’ microstructure.  相似文献   

15.
16.
Li/Ta/Sb co-doped lead-free (K0.4425Na0.52Li0.0375)(Nb0.93−xTaxSb0.07)O3 (abbreviated KNLNSTx) piezoelectric ceramics, with Ta-doping ratio of x ranging from 0.0275 to 0.0675, were synthesized using the conventional solid-state reaction method at the sintering temperature of 1130 °C. The effects of Ta content on the microstructure, dielectric properties, and phase transition behavior of the prepared ceramics were systematically investigated. The X-ray diffraction results show that all KNLNSTx ceramics formed a secondary phase, which is assigned to the tetragonal tungsten-bronze type (TTB) structure phase, and showed a phase transition from an orthorhombic symmetry to a tetragonal symmetry across a composition region of 0.0375<x<0.0475. The grain shape and size that correspond to the phase structure transformations can be clearly observed in the scanning electron microscopy images. As x increased to 0.0475, the KNLNST0.0475 ceramics changed from orthorhombic to tetragonal structure and showed excellent piezoelectric properties of d33=313 pC/N, kp=47%, and εr=1825. By contrast, samples of x=0.0375 with orthorhombic symmetry exhibited poor piezoelectric properties, with d33=200 pC/N and εr=1015. These results indicate that phase structure is vital in the piezoelectric properties of KNN lead-free ceramics.  相似文献   

17.
Glass–ceramics based on the CaO–MgO–SiO2 system with limited amount of additives (B2O3, P2O5, Na2O and CaF2) were prepared. All the investigated compositions were melted at 1400 °C for 1 h and quenched in air or water to obtain transparent bulk or frit glass, respectively. Raman spectroscopy revealed that the main constituents of the glass network are the silicates Q1 and Q2 units. Scanning electron microscopy (SEM) analysis confirmed liquid–liquid phase separation and that the glasses are prone to surface crystallization. Glass–ceramics were produced via sintering and crystallization of glass-powder compacts made of milled glass-frit (mean particle size 11–15 μm). Densification started at 620–625 °C and was almost complete at 700 °C. Crystallization occurred at temperatures >700 °C. Highly dense and crystalline materials, predominantly composed of diopisde and wollastonite together with small amounts of akermanite and residual glassy phase, were obtained after heat treatment at 750 °C and 800 °C. The glass–ceramics prepared at 800 °C exhibited bending strength of 116–141 MPa, Vickers microhardness of 4.53–4.65 GPa and thermal expansion coefficient (100–500 °C) of 9.4–10.8 × 10−6 K−1.  相似文献   

18.
The structural, vibrational, densification, and microwave properties of Ba(Co1/3Nb2/3)O3 ceramics with small compositional variations along several tie lines in the ternary BaOCoONb2O5 diagram were studied. The results showed that very small deviation from stoichiometric Ba(Co1/3Nb2/3)O3 composition has profound effect on Q × f, degree of ordering, densification, and phase assemblage. The 0.94 Ba(Co1/3Nb2/3)O3–0.06 Ba5Nb4O15 ceramic has the highest Q × f value (71 THz) – a value two times larger than that of stoichiometric Ba(Co1/3Nb2/3)O3 (36 THz). Transformation from the (partial) disordered distribution of Co and Nb cations to 1:2 ordered arrangement in the octahedral sites was found to increase the Q factor of the high density and single phase ceramics. It was also observed that formation of very small amount of Ba9CoNb14O45 second phase degraded Q × f value severely for the dense and highly ordered Nb-rich and Ba-deficient ceramics.  相似文献   

19.
《Ceramics International》2023,49(7):10652-10662
Transparent glass-ceramics containing eucryptite and nepheline crystalline phases were prepared from alkali (Li, Na) aluminosilicate glasses with various mole substitutions of Al2O3 for SiO2. The relationships between glass network structure and crystallization behavior of Li2O–Na2O–Al2O3–SiO2 (LNAS) glasses were investigated. It was found that the crystallization of the eucryptite and nepheline in LNAS glasses significantly depended on the concentration of Al2O3. LNAS glasses with the addition of Al2O3 from 16 to 18 mol% exhibited increasing Q4 (mAl) structural units confirmed by NMR and Raman spectroscopy, which promoted the formation of eucryptite and nepheline crystalline phases. With the Al2O3 content increasing to 19–20 mol%, the formation of highly disordered (Li, Na)3PO4 phase which can serve as nucleation sites was inhibited and the crystallization mechanism of glass became surface crystallization. Glass-ceramics containing 18 mol% Al2O3 showed high transparency ~84% at 550 nm. Moreover, the microhardness, elastic modulus and fracture toughness are 8.56 GPa, 95.7 GPa and 0.78 MPa m1/2 respectively. The transparent glass-ceramics with good mechanical properties show high potential in the applications of protective cover of displays.  相似文献   

20.
《Ceramics International》2016,42(16):18333-18337
The effect of CuO/MnO additives on phase composition, microstructures, sintering behavior, and microwave dielectric properties of 3ZrO2-3TiO2-ZnNb2O6 (3Z-3T-ZN) ceramics prepared by conventional solid-state route were systematically investigated. CuO/MnO doped ceramics exhibited a main phase of α-PbO2-structured ZrTi2O6 and a secondary phase of rutile TiO2. SEM results showed that the grain size of MnO doped ceramics became larger with increasing amount of dopants. The presence of CuO/MnO additives effectively reduced the sintering temperature of 3Z-3T-ZN ceramics to 1220 °C. MnO doped into ceramics could enhance the Q×f values significantly. The 0.5 wt% CuO doped 3Z-3T-ZN ceramics with 0.5 wt% of MnO, sintered at 1220 °C for 4 h, was measured to show superior microwave dielectric properties, with an εr of 41.02, a Q×f value of 44,230 GHz (at 5.2 GHz), and τf value of +2.32 ppm/°C.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号