首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The paper investigates the robust stability and performance of uncertain linear time‐varying (LTV) systems using an integral quadratic constraint (IQC) based analysis approach. Specifically, previous theoretical work on IQC‐based robustness analysis of linear time‐invariant (LTI) systems is extended to discrete‐time LTV systems. In the case of a general LTV nominal system, the analysis solution is provided in terms of an infinite‐dimensional convex optimization problem. This optimization problem reduces into a finite‐dimensional semidefinite program when the nominal system in question is finite horizon, periodic, or, more generally, eventually periodic. Finally, the results are applied to an unmanned aircraft control system executing an aggressive maneuver, where the developed techniques are used to find the region in which the aircraft is guaranteed to reside at the end of its planned trajectory. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

2.
The problem of the stability of a linear system with an interval time‐varying delay is investigated. A new Lyapunov–Krasovskii functional that fully uses information about the lower bound of the time‐varying delay is constructed to derive new stability criteria. It is proved that the proposed Lyapunov–Krasovskii functional can lead to less conservative results than some existing ones. Based on the proposed Lyapunov–Krasovskii functional, two stability conditions are developed using two different methods to estimate Lyapunov–Krasovskii functional's derivative. Two numerical examples are given to illustrate that the two stability conditions are complementary and yield a larger maximum upper bound of the time‐varying delay than some existing results. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

3.
A new robust adaptive control method is proposed, which removes the deficiencies of the classic robust multiple model adaptive control (RMMAC) using benefits of the ν‐gap metric. First, the classic RMMAC design procedure cannot be used for systematic design for unstable plants because it uses the Baram Proximity Measure, which cannot be calculated for open‐loop unstable plants. Next, the %FNARC method which is used as a systematic approach for subdividing the uncertainty set makes the RMMAC structure being always companion with the µ‐synthesis design method. Then in case of two or more uncertain parameters, the model set definition in the classic RMMAC is based on cumbersome ad hoc methods. Several methods based on ν‐gap metric for working out the mentioned problems are presented in this paper. To demonstrate the benefits of the proposed RMMAC method, two benchmark problems subject to unmodeled dynamics, stochastic disturbance input and sensor noise are considered as case studies. The first case‐study is a non‐minimum‐phase (NMP) system, which has an uncertain NMP zero; the second case‐study is a mass‐spring‐dashpot system that has three uncertain real parameters. In the first case‐study, five robust controller design methods (H2, H, QFT, H loop‐shaping and µ‐synthesis) are implemented and it is shown via extensive simulations that RMMAC/ν/QFT method improves disturbance‐rejection, when compared with the classic RMMAC. In the second case‐study, two robust controller design methods (QFT and mixed µ‐synthesis) are applied and it is shown that the RMMAC/ν/QFT method improves disturbance‐rejection, when compared with RMMAC/ν/mixed?µ. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

4.
This paper investigates the problem of finite time stability of linear time‐varying system with delay. By constructing an augmented time‐varying Lyapunov functional and using the Wirtinger‐type inequality deductively, delay‐dependent finite time stability conditions are derived and presented in terms of differential linear matrix inequalities (DLMIs). Then, the DLMIs are transformed into a series of recursive linear matrix inequalities (RLMIs) by discretizing the time interval into equally spaced time distances, and an algorithm is given to solve the RLMIs. Examples illustrate the feasibility and effectiveness of the proposed method.  相似文献   

5.
This paper studies the problem of stability analysis for continuous‐time systems with time‐varying delay. By developing a delay decomposition approach, the information of the delayed plant states can be taken into full consideration, and new delay‐dependent sufficient stability criteria are obtained in terms of linear matrix inequalities. The merits of the proposed results lie in their less conservatism, which are realized by choosing different Lyapunov matrices in the decomposed integral intervals and estimating the upper bound of some cross term more exactly. Numerical examples are given to illustrate the effectiveness and less conservatism of the proposed method. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

6.
Stability robustness of systems with uncertain time delays is considered. A new delay‐dependent state‐space stability criterion is formulated in the form of an easily checked LMI condition. Two applications of the main result are presented, one with only time‐delay uncertainty and one with both delay and parametric uncertainty. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

7.
This paper deals with the problem of obtaining delay‐dependent stability conditions and L2‐gain analysis for a class of nonlinear time‐delay systems with norm‐bounded and possibly time‐varying uncertainties. No restrictions on the derivative of the time‐varying delay are imposed, though lower and upper bounds of the delay interval are assumed to be known. A Lyapunov–Krasovskii functional approach is proposed to derive novel delay‐dependent stability conditions which are expressed in terms of linear matrix inequalities (LMIs). To reduce conservatism, the work exploits the idea of splitting the delay interval in multiple regions, so that specific conditions can be imposed to a unique functional in the different regions. This improves the computed bounds for certain delay‐dependent integral terms, providing less conservative LMI conditions. Examples are provided to demonstrate the reduced conservatism with respect to the available results in the literature. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

8.
We consider reduced‐order and subspace state estimators for linear discrete‐time systems with possibly time‐varying dynamics. The reduced‐order and subspace estimators are obtained using a finite‐horizon minimization approach, and thus do not require the solution of algebraic Lyapunov or Riccati equations. Copyright © 2009 John Wiley and Sons Asia Pte Ltd and Chinese Automatic Control Society  相似文献   

9.
This paper is concerned with the delay‐dependent stability and robust stability for uncertain systems with time‐varying delay. Through constructing an appropriate type of Lyapunov‐Krasovskii functional and proving its positive definiteness, using slack matrices and a convex combination condition, the delay‐dependent stability criteria, which are less conservative, are derived in terms of linear matrix inequalities. Numerical examples are also given to illustrate the improvement on the conservatism of the delay bound over some existing results. Copyright © 2011 John Wiley and Sons Asia Pte Ltd and Chinese Automatic Control Society  相似文献   

10.
This paper proposes an improvement to the delay‐dependent stability of discrete systems with time‐varying delays. The approach is based on the observation that the positive definiteness of a chosen Lyapunov–Krasovskii functional does not necessarily require all the involved symmetric matrices to be positive definite, which has been overlooked in the literature. The derived delay‐dependent stability conditions are in terms of linear matrix inequalities. It is theoretically proved that our results are less conservative than the corresponding ones obtained by requiring the positive definiteness of all the symmetric matrices in a chosen Lyapunov–Krasovskii functional. The importance of the present approach is that a great number of delay‐dependent analysis and synthesis results obtained by the aforementioned requirement in the literature can be improved by the present approach without introducing any new decision variables. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

11.
This paper studies the stability problem of a class of linear switched systems with time‐varying delay in the sense of Hurwitz convex combination. By designing a parameter‐dependent switching law and using a new convex combination technique to deal with delay terms, a new stability criterion is established in terms of LMIs, which is dependent on the parameters of Hurwitz convex combination. The advantage of the new criterion lies in its less conservatism and simplicity. Numerical examples are given to illustrate the effectiveness and the less conservatism of the proposed method. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

12.
This paper investigates the quadratic stability and stabilization of a class of matrix second‐order time‐varying systems. All the system matrices including the second‐order differential coefficient matrix are assumed to have the time‐varying norm‐bounded parameters. Necessary and sufficient conditions for the quadratic stability and stabilization of such time‐varying systems are derived. All the results are obtained in terms of linear matrix inequalities. Two illustrative examples are given to show that our results are effective and less conservative than the results obtained by other researchers. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

13.
This paper is concerned with delay‐dependent stability for linear systems with time‐varying delays. By decomposing the delay interval into multiple equidistant subintervals, on which different Lyapunov functionals are chosen, and new Lyapunov‐Krasvskii functionals are then constructed. Employing these new Lyapunov‐Krasvskii functionals, some new delay‐dependent stability criteria are established. The numerical examples show that the obtained results are less conservative than some existing ones in the literature. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

14.
General nonlinear time‐varying differential systems are considered. An explicit criterion for exponential stability is presented. Furthermore, an explicit robust stability bound for systems subjected to nonlinear time‐varying perturbations is given. In particular, it is shown that the generalized Aizerman conjecture holds for positive linear systems. Some examples are given to illustrate obtained results.Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

15.
This paper studies the H control for a class of quasi‐linear uncertain stochastic time‐varying delayed systems. Firstly, by using the linear matrix inequality (LMI) method, a sufficient condition is obtained for the robustly stochastic stability. Secondly, the robust H state feedback controller is designed, such that the considered system is not only internally stochastically stabilizable but also satisfies the robust H performance. The desired robust H controller is obtained via solving some LMIs. Finally, one example is provided to demonstrate the effectiveness of the proposed method.  相似文献   

16.
Time‐varying formation feasibility and formation reference function of linear multiagent systems with both time‐varying delays and switching directed topologies are studied. For a given linear multiagent system, not all the time‐varying formations can be realized due to the dynamic restriction of each agent. The formation feasibility constraint reveals the requirement on the desired time‐varying formation to be compatible with the agent dynamics. Formation reference is a representation for the macroscopic movement of the whole multiagent system. Novel features of the formation feasibility constraint and the formation reference are the main focus of this paper. Firstly, a time‐delayed formation control protocol with switching directed topologies is constructed using local neighboring information. Then, a time‐varying formation feasibility constraint is derived based on nonsingular transformations. It is proven that the time‐varying formation feasibility constraint is independent of the time‐varying delays and the switching directed topologies. Moreover, an explicit expression of the formation reference function is proposed. It is shown that neither the time‐varying delays nor the switching directed topologies has influence on the obtained formation reference function. Finally, comparative examples are provided to demonstrate the obtained results.  相似文献   

17.
This paper revisits the problem of delay‐dependent robust ? filtering design for a class of continuous‐time polytopic linear systems with a time‐varying state delay. Based on a newly developed parameter‐dependent Lyapunov–Krasovskii functional combined with Projection Lemma and an improved free‐weighting matrix technique for delay‐dependent criteria, a new sufficient condition for robust ? performance analysis is first derived and then the filter synthesis is developed by using a simple matrix inequality linearization technique. It is shown that the desired filters can be constructed by solving a set of linear matrix inequalities. Finally, two simulation examples are given to show the effectiveness and less conservatism of the proposed method in comparison with the existing approaches. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

18.
A team algorithm based on piecewise quadratic simultaneous Lyapunov functions for robust stability analysis and control design of uncertain time‐varying linear systems is introduced. The objective is to use robust stability criteria that are less conservative than the usual quadratic stability criterion. The use of piecewise quadratic Lyapunov functions leads to a non‐convex optimization problem, which is decomposed into a convex subproblem in a selected subset of decision variables, and a lower‐dimensional non‐convex subproblem in the remaining decision variables. A team algorithm that combines genetic algorithms (GA) for the non‐convex subproblem and interior‐point methods for the solution of linear matrix inequalities (LMI), which form the convex subproblem, is proposed. Numerical examples are given, showing the advantages of the proposed method. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

19.
This paper deals with the problem of exponential H filtering for a class of continuous‐time switched linear system with interval time‐varying delay. The time delay under consideration includes two cases: one is that the time delay is differentiable and bounded with a constant delay‐derivative bound, whereas the other is that the time delay is continuous and bounded. Switched linear filters are designed to ensure that the filtering error systems under switching signal with average dwell time are exponentially stable with a prescribed H noise attenuation level. Based on the free‐weighting matrix approach and the average dwell technology, delay‐dependent sufficient conditions for the existence of such a filter are derived and formulated in terms of linear matrix inequalities (LMIs). By solving that corresponding LMIs, the desired filter parameterized matrices and the minimal average dwell time are obtained. Finally, two numerical examples are presented to demonstrate the effectiveness of the developed results. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

20.
This paper focuses on the filter design problem for semi‐Markov jump linear systems. The system outputs are transmitted to the filter via networks, and it is assumed that the transmission is imperfect with data packet dropouts subject to the Bernoulli random binary distribution. A σ‐error mean square stability criterion is first derived for the underlying systems. On the basis of the criterion, the H performance analysis is conducted. By constructing a time‐varying Lyapunov function, a time‐varying H filter scheme is investigated. Because the presented approach can cover the mode‐dependent and mode‐independent time‐invariant H filter schemes as special cases, the conservatism of the derived results is less than those of the time‐invariant filter schemes. An active suspension system with activator uncertainties is lastly presented to illustrate the effectiveness and feasibility of the derived theoretical results. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号