首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 20 毫秒
1.
《Ceramics International》2017,43(14):11197-11203
Silicon carbide reticulated porous ceramics (SiC RPCs) were fabricated by polymer replica technique. The effects of nitride whisker template on the growth of mullite, the strut structure and mechanical properties of SiC RPCs were investigated. Prepolyurethane (PU) open-cell sponge was first coated by SiC slurry consisting of SiC, reactive Al2O3, microsilica and Si powder, then it was nitridized at 1400 °C in a flowing N2 atmosphere to prepare SiC preforms. Subsequently, these preforms were treated by vacuum infiltration of alumina slurry and fired at 1450 °C in air. The results showed that Si2N2O whiskers grew on the surface and in the matrix of SiC preforms after nitridation. The diameter of struts in SiC RPCs increased after vacuum infiltration process because alumina slurry was easily adhered by the surface nitride whiskers. In addition, such whiskers inside the strut of SiC preforms acted as the template to promote the growth of column-liked mullite in SiC RPCs. The mechanical properties and thermal shock resistance of SiC RPCs were greatly improved due to the special interfacial characteristics of multi-layered struts as well as better interlocked column-liked mullite in SiC skeleton.  相似文献   

2.
In this study, porous mullite ceramics with coral-like structures were fabricated at a low temperature of 900 °C by using photovoltaic silicon waste (PSW) as the silicon source directly. The effects of additive content and sintering temperature on the mullitization reaction of green bodies were studied. The results showed that ammonium molybdate tetrahydrate molybdenum (H24Mo7N6O24·4H2O) as an additive could reduce the reaction temperature for mullitization from 1100 °C to 900 °C. The research on the influence of catalyst on material properties showed that porous mullite ceramics with a flexural strength of 52.83 MPa, a 41.78 % porosity, a sintering expansion rate of 0.49 % and an average pore size of 0.23 μm could be fabricated by introducing 7.5 % H24Mo7N6O24·4H2O at the sintering temperature of 1000 °C. This study develops an environment-friendly recycling method of PSW and provides a new idea for the low-cost preparation of porous mullite ceramics with high purity.  相似文献   

3.
《Ceramics International》2016,42(11):13091-13097
Silicon carbide reticulated porous ceramics (SiC RPCs) with multi-layered struts were fabricated at 1450 °C by polymer sponge replica technique, followed by vacuum infiltration. The effect of additives (polycarboxylate, ammonium lignosulfonate and sodium carboxymethyl-cellulose) on the rheological behavior of silicon carbide slurry was firstly investigated, and then the slurry was coated on polyurethane open-cell sponge template. Furthermore, alumina slurry was adopted to fill up the hollow struts in vacuum infiltration process after the coated sponge was pre-treated at 850 °C. The results showed that the coating thickness on the struts and the microstructure in SiC RPCs were closely associated with the solid content of alumina slurry during vacuum infiltration. The typical multi-layered strut of SiC RPCs could be achieved after the infiltration of an alumina slurry containing 77 wt% solid content. The compressive strength and thermal shock resistance of the infiltrated specimens were significantly improved in comparison with those of non-infiltrated ones. The improvement was attributed to the in-situ formation of reaction-bonded multilayer struts in SiC RPCs, which were characterized by the exterior coating of aluminosilicate-corundum, middle part of mullite bonded SiC and interior zone of corundum.  相似文献   

4.
《Ceramics International》2022,48(4):5197-5203
In this study, foam ceramics were prepared via a direct foaming method at high temperatures (1080–1120 °C), using red mud (RM) and K-feldspar washed waste (KFW) as the raw materials and SiC as the foaming agent, respectively. The chemical compositions and crystalline phases of the raw materials as well as the structural and mechanical properties of the foam ceramics were investigated. By adjusting the formulation and sintering process parameters, the porous structure of the foam ceramics could be effectively modulated. In addition to some residual crystalline phases in the raw materials, new phases, including rutile (TiO2) and anorthite (CaAl2Si2O8), were generated in foam ceramics. The compressive strength of the foam ceramics decreased with an increase in the KFW/RM ratio and sintering temperature, which was mainly related to the low density of the foam ceramics and the poor support of the pore walls to the structure. Among all the foam ceramics investigated, the foam ceramic with the KFW/RM ratio of 1:1, SiC content of 1 wt%, sintering temperature of 1100 °C and sintering time of 60 min showed the best overall performance with a bulk density, an apparent porosity, an average pore size and a compressive strength of 0.77 g/cm3, 61.89%, 0.52 mm, and 3.64 MPa, respectively. Its excellent porous structure and mechanical properties rendered it suitable for application as insulation materials or decorative materials for building partition walls.  相似文献   

5.
Mullite bonded SiC ceramic membranes were synthesized by a facile solid-state reaction process, using SiC, solid waste fly ash as raw materials and MoO3 as catalyst for growth of mullite at 1000 °C. The effect of MoO3 catalyst on mullitization reaction and mullite morphology was investigated. Different pore formers were used to enhance the porosity and to observe its effects on the permeability parameters and filtration characteristics. At room temperature Darcian (k1) and non-Darcian (k2) in both water and air flow were measured and clean water flux was determined. The porous SiC ceramics with addition of 5 wt.% MoO3 exhibited a flexural strength of 38.4 MPa at porosity 36.4 vol% and showed 92% oil removal efficiency from oily wastewater. This technique, combining low-cost materials and the co-sintering at low temperature, can serve as a cost-effective method for the production of high-performance porous SiC ceramic membrnaes for filtration application.  相似文献   

6.
《Ceramics International》2017,43(4):3741-3747
Silicon carbide reticulated porous ceramics (SiC RPCs) with three-layered struts were fabricated by polymer replica method, followed by infiltrating alumina slurries containing silicon (slurry-Si) and andalusite (slurry-An), respectively. The effects of composition of infiltration slurries on the strut structure, mechanical properties and thermal shock resistance of SiC RPCs were investigated. The results showed that the SiC RPCs infiltrated with slurry-Si and slurry-An exhibited better mechanical properties and thermal shock resistance in comparison with those of alumina slurry infiltration, even obtained the considerable strength at 1300 °C. In slurry-Si, silicon was oxidized into SiO2 in the temperature range from 1300 °C to 1400 °C and it reacted with Al2O3 into mullite phase at 1450 °C. Meantime, the addition of silicon in slurry-Si could reduce SiC oxidation of SiC RPCs during firing process in contrast with alumina slurry. With regard to slurry-An, andalusite started to transform into mullite phase at 1300 °C and the secondary mullitization occurred at 1450 °C. The enhanced mechanical properties and thermal shock resistance of SiC RPCs infiltrated alumina slurries containing silicon and andalusite were attributed to the optimized microstructure and the triangular zone (inner layer of strut) with mullite bonded corundum via reaction sintering. In addition, the generation of residual compressive stress together with better interlocked needle-like mullite led to the crack-deflection in SiC skeleton, thus improving the thermal shock resistance of obtained SiC RPCs.  相似文献   

7.
Low-cost porous mullite ceramic membrane supports were fabricated from recycling coal fly ash with addition of natural bauxite. V2O5 and AlF3 were used as additives to cause the growth of mullite crystals with various morphologies via an in situ reaction sintering. Dynamic sintering, microstructure and phase evolution of the membrane supports were characterized in detail and open porosity, pore size, gas permeation and mechanical properties were determined. It showed the membrane support with 3 wt.% V2O5 and 4 wt.% AlF3 addition exhibits an open porosity of ∼50%, mechanical strength of 69.8 ± 7.2 MPa, an interlocking microstructure composed of anisotropically grown mullite whiskers with an aspect ratio of 18.2 ± 3.6 at 1300 °C. Addition of more V2O5 lowered the secondary mullitization temperature, resulting in more mullite formation at lower temperatures. The fabricated membrane supports feature high porosity without mechanical strength degradation, possible strengthening mechanism of the mullite whiskers was further discussed.  相似文献   

8.
《Ceramics International》2017,43(15):11855-11863
A new gradient pore structure in porous SiC ceramics was fabricated by low pressure chemical vapor infiltration (LPCVI). Effects of deposition duration on the mechanical properties and permeability of porous SiC ceramics were investigated. Results demonstrated that pore diameter and shapes decreased from the surface to the interior along with LPCVI duration. Porous SiC ceramics with deposition duration of 160 h exhibited flexural strength of 48.05 MPa and fracture toughness of 1.30 MPa m1/2, where 221% and 189% improvements were obtained compared to porous SiC ceramics without LPCVI, due to CVI-SiC layer strengthening effect. Additionally, at the same gas velocity, pressure drop increase rate was faster due to apparent porosity and pore size change.  相似文献   

9.
Elongated mullite was synthesized using mullite powder as a raw material and AlF3·3H2O as an additive, and characterized by X-ray diffraction (XRD), field emission scanning electron microscopy (FE-SEM) and transmission electron microscopy (TEM). The effects of AlF3·3H2O content and reaction temperature on the formation of elongated mullite were investigated, and the relevant growth mechanism was discussed based on the experimental results and density functional theory (DFT) calculations. When the optimal amount of AlF3·3H2O (4?wt% in the present work) was used, the length and diameter of elongated mullite increased with increasing the reaction temperature, and elongated mullite of 22.3?µm in average length and 4.6?µm in average diameter was formed after 5?h at 1873?K. Based on the results, elongated mullite self-reinforced porous ceramics were prepared by a combined foam-gelcasting and solid-reaction method, and their mechanical properties were examined. Elongated mullite in-situ formed in the porous samples evidently enhanced their mechanical strength. The flexural strength of the elongated mullite self-reinforced porous sample with 67.0% porosity (prepared using 6?wt% AlF3·3H2O) was as high as 13.9?MPa, which was about 26.4% higher than that of a porous sample (11.0?MPa) prepared without AlF3·3H2O.  相似文献   

10.
Recycling has enormous economic benefits and practical significance under the context of gradually increasing solid wastes. In order to recycle and reuse the silicon kerf waste, in this work, porous SiCw/SiC ceramics were successfully prepared by in situ synthesis from silicon kerf waste and fired at 1400-1500°C for 4 hours. The results showed that these porous ceramics, reinforced by the interlocking whisker, revealed high apparent porosity (48.02%-51.76%) and cold compressive strength (5.68-9.54 MPa). Furthermore, the practicable pore size (2.09-2.53 μm) and decent durability showed the potential of these porous ceramics as membrane supports. This work verified the possibility of the SiC-based ceramics prepared from the silicon kerf waste.  相似文献   

11.
Commercially available silicone resin and silicon carbide (SiC) powders were adopted as the starting materials for the fabrication of porous SiC ceramics. During the heat treatment process, silicone resin experienced an organic–inorganic transformation and acted as the bonding material between SiC particles at a low temperature of 1000 °C. The mean particle size of starting SiC powders and silicone resin content can control the pore size, open porosity and fracture strength. The flexural strength of porous SiC ceramics increases with increasing silicone resin content and decreasing mean particle size of SiC powders. Larger pores can be obtained with coarser starting SiC powders and higher silicone resin content. The fracture surface of porous SiC ceramics was observed.  相似文献   

12.
Precursor infiltration and pyrolysis (PIP) and chemical vapor infiltration (CVI) were used to fabricate SiC/SiC composites on a four-step 3D SiC fibre preform deposited with a pyrolytic carbon interface. The effects of fabrication processes on the microstructure and mechanical properties of the SiC/SiC composites were studied. Results showed the presence of irregular cracks in the matrix of the SiC/SiC composites prepared through PIP, and the crystal structure was amorphous. The room temperature flexural strength and modulus were 873.62 MPa and 98.16 GPa, respectively. The matrix of the SiC/SiC composites prepared through CVI was tightly bonded without cracks, the crystal structure had high crystallinity, and the room temperature bending strength and modulus were 790.79 MPa and 150.32 GPa, respectively. After heat treatment at 1300 °C for 50 h, the flexural strength and modulus retention rate of the SiC/SiC composites prepared through PIP were 50.01% and 61.87%, and those of the composites prepared through CVI were 99.24% and 96.18%, respectively. The mechanism of the evolution of the mechanical properties after heat treatment was examined, and the analysis revealed that it was caused by the different fabrication processes of the SiC matrix. After heat treatment, the SiC crystallites prepared through PIP greatly increased, and the SiOxCy in the matrix decomposed to produce volatile gases SiO and/or CO, ultimately leading to an increase in the number of cracks and porosity in the material and a decrease in the material load-bearing capacity. However, the size of the SiC crystallites prepared through CVI hardly changed, the SiC matrix was tightly bonded without cracks, and the load-bearing capacity only slightly changed.  相似文献   

13.
《Ceramics International》2020,46(14):22102-22107
Multiphase ceramics like ZrC/SiC are promising candidates as ultra-high temperature ceramics for applications in extreme environments. In this work, non-oxide precursors for ZrC/SiC and HfC/SiC composite ceramics were synthesized by a one-pot reaction of three components – metal source, silicon source, and activating reagent. Molecular structures of the precursors were identified by 1H NMR and FTIR. Transformation process of the precursors to the ZrC/SiC ceramics was investigated via XRD and SEM. After heat-treatment at 1600 °C under argon, the obtained ZrC/SiC and HfC/SiC ceramics features a particle size of 100–200 nm and high metal content without excess carbon. The elemental composition of pyrolyzed ceramics can be tuned by varying the ratio of the reagents in the synthesis of precursors. This strategy also inspires a facile fabrication of composite ceramics with other elemental compositions.  相似文献   

14.
In order to meet the demand for thermal insulation and sound absorption, fibrous porous mullite ceramics (FPMC) with high porosity and an interconnected pore structure were prepared, followed by a pore structure modification with in situ grown mullite whiskers on the three-dimensional framework of the FPMC. The resultant hierarchical material exhibited superior sound absorption performance in the low-to-medium frequency to most reported sound-absorbing materials, as well as a sufficient compressive strength of 1.26 MPa with low thermal conductivity of 0.117 W·m?1·K?1. Moreover, the effects of solid content and mullite whiskers on the microstructure and physical properties of the material were analyzed. The increase of solid content led to increased compressive strength and thermal conductivity and decreased frequency corresponding to the first sound absorption peak. The thermal conductivity and compressive strength of the material increased as the mullite whiskers grew, while the median pore size decreased.  相似文献   

15.
The porous anorthite ceramics with high porosity, good mechanical strength and low heat conductivity were prepared using red mud and fly ash as raw materials via the pore forming method. The effects of sintering temperature and fly ash on phase evolution, densification, compressive strength, thermal conductivity and microstructure of the ceramic materials were investigated. The results showed that the compressive strength of the porous ceramics had an obvious improvement with the increase in fly ash, and the densification and heat conductivity decreased firstly and then increased. In particular, specimen S2 containing 30 wt% red mud and 40 wt% fly ash sintered at 1150°C had the better performances. It had the water absorption of 18.18%, open porosity of 38.52%, bulk density of 1.29 g/cm3, compressive strength of 42.46 MPa, and heat conductivity of 1.24 W/m·K. X-ray diffraction analysis indicated that mullite, anorthite, α-quartz, and diopside ferrian were the dominant phases in the specimens. Scanning electron microscopy micrographs illustrated that plenty of open pores with strip shape and closed pores with axiolitic shape existed in the specimens. Furthermore, the existence of mullite could prevent crack propagation to enhance the energy of inter-granular fracture. It endowed the porous anorthite ceramics with high porosity, good compressive strength, and low heat conductivity.  相似文献   

16.
《Ceramics International》2016,42(13):14843-14848
A novel fibrous porous mullite network with a quasi-layered microstructure was produced by a simple vacuum squeeze moulding technique. The effects of organic binder content, inorganic binder and adsorbent on the microstructure and the room-temperature thermal and mechanical properties of fibrous porous mullite ceramics were systematically investigated. An anisotropy microstructure without agglomeration and layering was achieved. The fibrous porous mullite ceramics reported in this study exhibited low density (0.40 g/cm3), low thermal conductivity (~0.095 W/(m K)), and high compressive strength (~2.1 MPa in the x/y direction). This study reports an optimal processing method for the production of fibrous porous ceramics, which have the potential for use as high-temperature thermal insulation material.  相似文献   

17.
《Ceramics International》2022,48(4):4754-4762
Four different alumina content of mullite ceramics were fabricated by powders synthesized using the sol-gel method. The synthesis process of powders, microstructure evolution, mechanical and optical properties of the mullite ceramics were studied. The XRD results showed that the precursors transformed into aluminosilicate spinel phase at 1000 °C and mullite phase at 1200 °C. Equiaxial grains were easy to form in the alumina-rich mullite ceramics while elongated grains were easy to form in the alumina-poor mullite ceramics. With the increase of alumina content, the grain size of the samples firstly increased and then decreased, the number of elongated grains decreased while equiaxed grains increased. The flexural strength, compression strength, fracture toughness, and Vickers hardness all decreased firstly and then increased. While the infrared transmittance increased firstly and then decreased. The transmittance at 4 μm (thickness of 0.75 mm) of the ceramics containing 66mol% Al2O3 reached the highest (72%) when sintered at 1780 °C because of the equiaxial grains.  相似文献   

18.
Mullite-bonded porous SiC ceramics sintered in air by gelcasting are still challenges due to the high porosity induced severe oxidation of SiC, which results in the formation of large amount of detrimental cristobalite phase. Here in this work, small amounts of Y2O3 and CaF2 were added in SiC and Al(OH)3 raw materials as sintering additives for the in situ growth of mullite reinforcement. This additive system promoted the reaction between oxidation-derived SiO2 from SiC and Al2O3 decomposed from Al(OH)3 to mullite phase. Almost no cristobalite phase was detected when sintered at 1450℃/2 h with CaF2 addition of more than 2.0 wt%. Mullite whisker reinforcement was in situ formed due to the gas reaction mechanism caused by CaF2 addition. Thus obtained porous SiC ceramics exhibited a flexural strength of 67.6 MPa at porosity of 41.3%, which maintained exceeding 36 MPa after 8 h corrosion in 10 wt% NaOH 80℃ solution, being the best performance up to now. This high performance of porous SiC was attributed to the additive induces proper phase control and in situ formation of whisker-like mullite reinforcement.  相似文献   

19.
In this paper, porous SiC ceramics (PSCs) were fabricated from photovoltaic waste at low temperatures. The effects of different additives and sintering temperatures on PSCs were studied in detail. The temperature of PSCs preparation can be reduced to 850?°C by adding MoO3 as catalyst. The PSCs are reinforced by mullite rods grown in-situ, they also have a high permeability coefficient due to their network structure. From 850?°C to 1200?°C, the open porosity of PSCs changed slightly, and was within 45.32?±?0.6%. The PSCs produced at 1000?°C had the highest gas permeability coefficient of 8.24?×?10–11?m2 and the highest flexural strength of 50.17?MPa. However, the same PSCs could not be fabricated at 850?°C when Y2O3 or CeO2 were used as sintering aids. This study provides an environment-friendly method for reusing photovoltaic waste and reducing the cost of preparing PSCs.  相似文献   

20.
《Ceramics International》2017,43(17):14683-14692
Cordierite-silica bonded porous SiC ceramics were fabricated by infiltrating a porous powder compact of SiC with cordierite sol followed by sintering at 1300–1400 °C in air. The porosity, average pore diameter and flexural strength of the ceramics varied 30–36 vol%, ~ 4–22 µm and ~ 13–38 MPa respectively with variation of sintering temperature and SiC particle sizes. In the final ceramics SiC particles were bonded by the oxidation-derived SiO2 and sol-gel derived cordierite. The corrosion behaviour of sintered SiC ceramics was studied in acidic and alkaline medium. The porous SiC ceramics were observed to exhibit better corrosion resistance in acid solution.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号