首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The emergence of multidrug resistant bacteria, especially biofilm‐associated Staphylococci, urgently requires novel antimicrobial agents. The antibacterial activity of ultrasmall gold nanoparticles (AuNPs) is tested against two gram positive: S. aureus and S. epidermidis and two gram negative: Escherichia coli and Pseudomonas aeruginosa strains. Ultrasmall AuNPs with core diameters of 0.8 and 1.4 nm and a triphenylphosphine‐monosulfonate shell (Au0.8MS and Au1.4MS) both have minimum inhibitory concentration (MIC) and minimum bactericidal concentration of 25 × 10?6m [Au]. Disc agar diffusion test demonstrates greater bactericidal activity of the Au0.8MS nanoparticles over Au1.4MS. In contrast, thiol‐stabilized AuNPs with a diameter of 1.9 nm (AuroVist) cause no significant toxicity in any of the bacterial strains. Ultrasmall AuNPs cause a near 5 log bacterial growth reduction in the first 5 h of exposure, and incomplete recovery after 21 h. Bacteria show marked membrane blebbing and lysis in biofilm‐associated bacteria treated with ultrasmall AuNP. Importantly, a twofold MIC dosage of Au0.8MS and Au1.4MS each cause around 80%–90% reduction in the viability of Staphylococci enveloped in biofilms. Altogether, this study demonstrates potential therapeutic activity of ultrasmall AuNPs as an effective treatment option against staphylococcal infections.  相似文献   

2.
The aim of this work was to compare the effects of three commercially available gold nanoparticles (AuNPs) of different sizes (30, 50 and 90 nm) on the viability of normal human dermal fibroblasts (NHDF). In addition, we evaluated protective effect of N-Acetyl-L-cysteine (NAC), total glutathione content (GSH/GSSG), superoxide dismutase (SOD) activity and reactive oxygen species (ROS) production to investigate if oxidative stress was involved in the cytotoxic response of these AuNPs. Although AuNP-induced cytotoxicity was dose and time dependent, nanoparticle size slightly influenced the cytotoxic response of AuNPs assessed by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide and lactate dehydrogenase. Regarding oxidative parameters, NAC produced no significant protection of NHDF cells against treatment with any of the three AuNPs. Independently on nanoparticle size, GSH/GSSG content was drastically depleted after 24 h of incubation with the three AuNPs (less than 15% in all cases), while no statistically significant changes on SOD activity were reported (~90% of activity). The three AuNPs also caused a notable increase in the ROS production of NHDF cells. In conclusion, our data suggest that AuNP-induced cytotoxicity in NHDF is mediated by oxidative stress and it is independent of nanoparticle size.  相似文献   

3.
It is becoming increasingly common to use gold nanoparticles (AuNPs) protected by a heterogeneous mixture of thiolate ligands, but many ligand mixtures on AuNPs cannot be properly characterized due to the inherent limitations of commonly used spectroscopic techniques. Using ion mobility-mass spectrometry (IM-MS), we have developed a strategy that allows measurement of the relative quantity of ligands on AuNP surfaces. This strategy is used for the characterization of three samples of mixed-ligand AuNPs: tiopronin:glutathione (av diameter 2.5 nm), octanethiol:decanethiol (av diameter 3.6 nm), and tiopronin:11-mercaptoundecyl(poly ethylene glycol) (av diameter 2.5 nm). For validation purposes, the results obtained for tiopronin:glutathione AuNPs were compared to parallel measurements using nuclear magnetic resonance (NMR) spectroscopy and mass spectrometry (MS) without ion mobility separation. Relative quantitation measurements for NMR and IM-MS were in excellent agreement, with an average difference of less than 1% relative abundance. IM-MS and MS without ion mobility separation were not comparable, due to a lack of ion signals for MS. The other two mixed-ligand AuNPs provide examples of measurements that cannot be performed using NMR spectroscopy.  相似文献   

4.
The importance of detecting and subtyping human papillomaviruses (HPVs) in clinical and epidemiological studies has been well addressed. In detecting the most common types of HPV, type 16 (HPV-16) and type 18 (HPV-18), in the cervical mucous of patients in a simple and rapid manner, the assay of a label-free colorimetric DNA sensing method based on sequence sandwich hybridization with oligonucleotide-functionalized Au nanoparticles (AuNPs) was fabricated in this study. Specific oligonucleotide probes were designed for the sequence detection within the L1 gene of HPV-16 and HPV-18, and the probes were capped onto AuNPs, as AuNP probes. The target HPV sequences in clinical specimens were obtained by an asymmetric polymerase chain reaction (PCR) with universal primers, which can amplify the target sequences from several HPV serotypes, including HPV-16 and HPV-18. The DNA sandwich hybridization between the target sequences and the specific AuNP probes was performed at a temperature closer to the theoretical melting temperature of the DNA hybridization. Next, the procedure of increasing salt concentration and cooling the hybridizing solution was immediately utilized to discriminate the target sequences of HPV-16 or HPV-18. If the target sequences were not complementary to sequences of AuNP probes, the AuNPs would aggregate because no duplex DNA formation occurred such that the color of the reaction solution changed from red to purple. If the AuNP probes were a perfect match to the target sequences and a full DNA sandwich hybridization occurred, the reaction solution maintained its red color. A total of 70 mucous specimens from patients with cervical intraepithelial neoplasia were tested by the AuNP probes sandwich hybridization.   相似文献   

5.
Conductive films that are highly transparent and flexible are extremely attractive for emerging optoelectronic applications. Currently, indium‐doped tin oxide films are the most widely used transparent conductive films and much research effort is devoted to developing alternative transparent conductive materials to overcome their drawbacks. In this work, a novel and facile approach for fabricating transparent conductive Au nanosheets from Au nanoparticles (AuNPs) is proposed. Irradiating an AuNP monolayer at the air–water interface with UV light results in a nanosheet with ≈3.5 nm thickness and ≈80% transparency in the UV–visible region. Further, the so‐fabricated nanosheets are highly flexible and can maintain their electrical conductivity even when they are bent to a radius of curvature of 0.6 mm. Fourier‐transform infrared and X‐ray photoelectron spectroscopy characterizations reveal that the transformation of the monolayer of AuNPs into the nanosheet is induced by the photodecomposition and/or photodetachment of the dodecanethiol ligands capping the AuNPs. Further, the UV‐irradiation of a hybrid monolayer consisting of AuNPs and silica particles affords the patterning of Au nanosheets with periodic hole arrays.  相似文献   

6.
Organically modified silver nanoparticles were prepared by biosynthetic route induced by stem latex of a medicinally important plant, Euphorbia nivulia. The reduction and stabilization is assisted by certain peptides and terpenoids present within the latex. The aqueous formulation of latex capped silver nanoparticles (LAgNPs) being completely free of toxic chemicals can be directly used for administration/in vivo delivery of nanoparticles. The in vitro cytotoxicity evaluation of the latex capped nanoparticles was carried out using human lung carcinoma cells (A549) by MTT cell viability assay. Further, possible cytotoxic mechanisms were evaluated using various biomarkers for cytotoxicity and oxidative stress viz. extracellular lactate dehydrogenase (LDH) release, reactive oxygen species (ROS) generation, intracellular reduced glutathione (GSH), malondialdehyde (MDA), superoxide generation and acridine orange/ethedium bromide staining. It can be concluded from the present study that LAgNP formulation is toxic to A549 cells in a dose dependent manner. Thus plant latex solubilizes the AgNPs in water and acts as a biocompatible vehicle for transport of AgNPs to tumor/cancer cells.  相似文献   

7.
Gold nanoparticles (AuNPs) are widely used as carriers or therapeutic agents due to their great biocompatibility and unique physical properties. Transforming growth factor‐beta 1 (TGF‐β1), a member of the cysteine‐knot structural superfamily, plays a pivotal role in many diseases and is known as an immunosuppressive agent that attenuates immune response resulting in tumor growth. The results reported herein reflect strong interactions between TGF‐β1 and the surface of AuNPs when incubated with serum‐containing medium, and demonstrate a time‐ and dose‐dependent pattern. Compared with other serum proteins that can also bind to the AuNP surface, AuNP–TGFβ1 conjugate is a thermodynamically favored compound. Epithelial cells undergo epithelial–mesenchymal transition (EMT) upon treatment with TGF‐β1; however, treatment with AuNPs reverses this effect, as detected by cell morphology and expression levels of EMT markers. TGF‐β1 is found to bind to AuNPs through S–Au bonds by X‐ray photoelectron spectroscopy. Fourier transform infrared spectroscopy is employed to analyze the conformational changes of TGF‐β1 on the surface of AuNPs. The results indicate that TGF‐β1 undergoes significant conformational changes at both secondary and tertiary structural levels after conjugation to the AuNP surface, which results in the deactivation of TGF‐β1 protein. An in vivo experiment also shows that addition of AuNPs attenuates the growth of TGF‐β1‐secreting murine bladder tumor 2 cells in syngeneic C3H/HeN mice, but not in immunocompromised NOD‐SCID mice, and this is associated with an increase in the number of tumor‐infiltrating CD4+ and CD8+ T lymphocytes and a decrease in the number of intrasplenic Foxp3(+) lymphocytes. The findings demonstrate that AuNPs may be a promising agent for modulating tumor immunity through inhibiting immunosuppressive TGF‐β1 signaling.  相似文献   

8.
An efficient and safe delivery system for small interfering RNA (siRNA) is required for clinical application of RNA interfering therapeutics. Polyethyleneimine (PEI)‐capped gold nanoparticles (AuNPs) are successfully manufactured using PEI as the reductant and stabilizer, which bind siRNA at an appropriate weight ratio by electrostatic interaction and result in well‐dispersed nanoparticles with uniform structure and narrow size distribution. With siRNA binding, PEI‐capped AuNPs induce more significant and enhanced reduction in targeted green fluorescent protein expression in MDA‐MB‐435s cells, though more internalized PEI/siRNA complexes in cells are evidenced by confocal laser scanning microscopy observation and fluorescence‐activated cell sorting analyses. PEI‐capped AuNPs/siRNA targeting endogenous cell‐cycle kinase, an oncogene polo‐like kinase 1 (PLK1), display significant gene expression knockdown and induce enhanced cell apoptosis, whereas it is not obvious when the cells are treated with PLK1 siRNA using PEI as the carrier. Without exhibiting cellular toxicity, PEI‐capped AuNPs appear to be suitable as a potential carrier for intracellular siRNA delivery.  相似文献   

9.
The interaction of gold nanoparticles (AuNPs) and typical tetracyanoquinoidal compounds such as bis(dicyanomethylene)-bithiophene and tetracyanoquinodimethane (TCNQ) has been investigated. AuNPs in toluene solution reduce the tetracyano compounds to the radical anion, as shown by UV-vis spectroscopy. The reaction, promoted by the bromide anion used as a stabilizer for AuNPs, involves in the case of TCNQ the total amount of Au(0) in the nanoparticles. A spectrophotometric method for the evaluation of the Au(0) content of capped AuNPs in organic solution has been established and successfully applied to the analysis of dodecanethiol-capped AuNPs.  相似文献   

10.
Well-defined Au/ZnO nanoparticle composites were prepared by modifying ZnO with preformed Au nanoparticles protected with bifunctional glutathione ligand. In this approach, the Au nanoparticles were highly monodisperse and their loading on ZnO surface could be precisely controlled by the anchoring conditions. Steady-state and time-resolved photoluminescence of the composites revealed the ability of the Au nanoparticles to efficiently extract conduction band electrons from the photoexcited ZnO. The composites exhibited strongly enhanced photocatalytic activity without requiring thermal activation process in degrading organic substrates in both oxidative and reductive pathways. A clear correlation between the photocatalytic activity and the Au loading was found for both oxidative and reductive photocatalytic reactions. These results demonstrate that thiolate-protected AuNPs can significantly enhance the charge separation by extracting electrons from the photoexcited ZnO and consequently improve the photocatalytic activity of the composites.  相似文献   

11.
Gold nanoparticles (AuNPs) are promising vehicles for cancer immunotherapy, with demonstrated efficacy in immune delivery and innate cell stimulation. Nevertheless, their potential has yet to be assessed in the in vivo application of peptide cancer vaccines. In this study, it is hypothesized that the immune distribution and adjuvant qualities of AuNPs could be leveraged to facilitate delivery of the ovalbumin (OVA) peptide antigen and the CpG adjuvant and enhance their therapeutic effect in a B16‐OVA tumor model. AuNP delivery of OVA (AuNP‐OVA) and of CpG (AuNP‐CpG) enhanced the efficacy of both agents and induced strong antigen‐specific responses. In addition, it is found that AuNP‐OVA delivery alone, without CpG, is sufficient to promote significant antigen‐specific responses, leading to subsequent anti‐tumor activity and prolonged survival in both prophylactic and therapeutic in vivo tumor models. This enhanced therapeutic efficacy is likely due to the adjuvant effect of peptide coated AuNPs, as they induce inflammatory cytokine release when cultured with bone marrow dendritic cells. Overall, AuNP‐mediated OVA peptide delivery can produce significant therapeutic benefits without the need of adjuvant, indicating that AuNPs are effective peptide vaccine carriers with the potential to permit the use of lower and safer adjuvant doses during vaccination.  相似文献   

12.
Chemical regulation of enzyme‐mimic activity of nanomaterials is challenging because it requires a precise understanding of the surface chemistry and mechanism, and rationally designed applications. Herein, Ag+‐gated peroxidase activity is demonstrated by successfully modulating surface chemistry of cetyltrimethylammonium bromide‐capped gold nanoparticles (CTAB‐AuNPs). A surface blocking effect of long‐chain molecules on surfaces of AuNPs that inhibit peroxidase activity of AuNPs is found. Ag+ ions can selectively bind on the surfaces of AuNPs and competitively destroy CTAB membrane forming Ag+@CTAB‐AuNPs complexes to result in enhanced peroxidase activity. Ag+@CTAB‐AuNPs show the highest peroxidase activity compared to similar‐sized citrate‐capped and ascorbic acid‐capped AuNPs. Ag+@CTAB‐AuNPs can potentially develop into analyte‐responsive systems and exhibit advantages in the optical sensing field. For example, the Ag+@CTAB‐AuNPs system shows an enhanced sensitivity and selectivity for acetylcholinesterase activity sensing compared to other methods.  相似文献   

13.
Gold nanoparticles (AuNPs) are an integral part of many exciting and novel biomedical applications, sparking the urgent need for a thorough understanding of the physicochemical interactions occurring between these inorganic materials, their functional layers, and the biological species they interact with. Computational approaches are instrumental in providing the necessary molecular insight into the structural and dynamic behavior of the Au‐bio interface with spatial and temporal resolutions not yet achievable in the laboratory, and are able to facilitate a rational approach to AuNP design for specific applications. A perspective of the current successes and challenges associated with the multiscale computational treatment of Au‐bio interfacial systems, from electronic structure calculations to force field methods, is provided to illustrate the links between different approaches and their relationship to experiment and applications.  相似文献   

14.
Layer-by-layer (LBL) self-assembled multilayer films of gold nanoparticles (AuNPs) on a silicon wafer were demonstrated to be promising substrates for surface-assisted laser desorption/ionization (SALDI) mass spectrometry (MS) of peptides and environmental pollutants for the first time. LBL multilayer films, (AuNPs/PAHC)n, consisting of alternating layers of ammonium citrate capped AuNPs and poly(allylamine hydrochloride) (PAHC) were prepared on a silicon surface. Silicon plates with aggregated AuNPs were more suitable than those with dispersed AuNPs for the SALDI-MS of peptides. The number of particle layers had a significant effect on the laser desorption/ionization of angiotensin I; the peak intensity of the peptide (molecular ion amount) increased with an increase in the number of layers of AuNPs. As a result, the (AuNPs/PAHC)5 multilayer films increased the sensitivity of the angiotensin I to subfemtomoles and raised the useful analyte mass range, thus making it possible to detect small proteins (a 12 kDa cytochrome c). The signal enhancement when using (AuNPs/PAHC)5 may be due to (i) the high absorption of the UV laser light at 337 nm by the AuNP layers, (ii) the low thermal conductivity due to the AuNPs being covered with a thin monolayer of PAHC, and (iii) the increase in the surface roughness (approximately 100 nm) with the number of AuNP layers. Thus, laser-induced rapid high heating of AuNPs for effective desorption/ionization of peptides is possible. In addition, it was found that (AuNPs/PAHC)5 could be used to extract environmental pollutants (pyrene and dimethyldistearylammonium chloride) from very dilute aqueous solutions with concentrations less than 10(-10) mg/mL, and the analytes trapped in the LBL film could be identified by introducing the film directly into the SALDI mass spectrometer without needing to elute the analytes out of the film.  相似文献   

15.
Understanding the molecular mechanisms governing nanoparticle–membrane interactions is of prime importance for drug delivery and biomedical applications. Neutron reflectometry (NR) experiments are combined with atomistic and coarse‐grained molecular dynamics (MD) simulations to study the interaction between cationic gold nanoparticles (AuNPs) and model lipid membranes composed of a mixture of zwitterionic di‐stearoyl‐phosphatidylcholine (DSPC) and anionic di‐stearoyl‐phosphatidylglycerol (DSPG). MD simulations show that the interaction between AuNPs and a pure DSPC lipid bilayer is modulated by a free energy barrier. This can be overcome by increasing temperature, which promotes an irreversible AuNP incorporation into the lipid bilayer. NR experiments confirm the encapsulation of the AuNPs within the lipid bilayer at temperatures around 55 °C. In contrast, the AuNP adsorption is weak and impaired by heating for a DSPC–DSPG (3:1) lipid bilayer. These results demonstrate that both the lipid charge and the temperature play pivotal roles in AuNP–membrane interactions. Furthermore, NR experiments indicate that the (negative) DSPG lipids are associated with lipid extraction upon AuNP adsorption, which is confirmed by coarse‐grained MD simulations as a lipid‐crawling effect driving further AuNP aggregation. Overall, the obtained detailed molecular view of the interaction mechanisms sheds light on AuNP incorporation and membrane destabilization.  相似文献   

16.
This paper describes the synthesis of fused spherical gold nanoparticles (AuNPs) and their electrocatalytic activity towards the oxidation of hydroxylamine (HA). Fused AuNPs were prepared by one-pot synthesis using 2-mercapto-4-methyl-5-thiazoleacetic acid (TAA) as a stabilizing agent and sodium borohydride (NaBH4) as a reducing agent. The HR-TEM images showed that two individual AuNP were joined via on its surface with a size range of approximately 7 nm and a length of approximately 15 nm diameter. The pH studies showed that the synthesized fused AuNPs was stable at pH > 8. This indicated that the carboxylate ion present on the TAA molecule stabilized the AuNPs from aggregation. Further, the fused AuNPs were utilized for the electrocatalytic oxidation of hydroxylamine (HA) after immobilized them on (3-mercaptopropyl)-trimethoxysilane (MPTS) sol-gel film modified Au electrode. The AuNPs modified electrode showed an excellent electrocatalytic activity towards the oxidation of HA in 0.2 M phosphate buffer solution (pH 7.2) by shifting its oxidation potential to 100 mV less positive and enhancing its oxidation current for more than three times when compared to bare Au electrode. Further, it was found that the fused AuNPs modified electrode showed greater electrocatalytic activity towards HA than the spherical AuNPs modified electrodes.  相似文献   

17.
Graphene nanosheets and metal nanoparticles (NPs) have been used as nano‐building‐blocks for assembly into macroscale hybrid structures with promising performance in electrical devices. However, in most graphene and metal NP hybrid structures, the graphene sheets and metal NPs (e.g., AuNPs) do not enable control of the reaction process, orientation of building blocks, and organization at the nanoscale. Here, an electrophoretic layer‐by‐layer assembly for constructing multilayered reduced graphene oxide (RGO)/AuNP films and lateral micropatterns is presented. This assembly method allows easy control of the nano‐architecture of building blocks along the normal direction of the film, including the number and thickness of RGO and AuNP layers, in addition to control of the lateral orientation of the resultant multilayered structures. Conductivity of multilayered RGO/AuNP hybrid nano‐architecture shows great improvement caused by a bridging effect of the AuNPs along the out‐of‐plane direction between the upper and lower RGO layers. The results clearly show the potential of electrophoretic build‐up in the fabrication of graphene‐based alternately multilayered films and patterns. Finally, flexible supercapacitors based on multilayered RGO/AuNP hybrid films are fabricated, and excellent performance, such as high energy and power densities, are achieved.  相似文献   

18.
Telomerase is over‐expressed in over 85% of all known human tumors. This renders the enzyme a valuable biomarker for cancer diagnosis and an important therapeutic target. The most widely used telomeric repeat amplification protocol (TRAP) assay has been questioned for telomerase detection. It is reported that human telomerase activity can be visualized by using primer‐modified Au nanoparticles. The working principle is based on the elongated primers conjugated to the gold nanoparticle (AuNP) surface, which can fold into a G‐quadruplex to protect the AuNPs from the aggregation. The developed simple and sensitive colorimetric assay can measure telomerase activity down to 1 HeLa cell µL?1. More importantly, this assay can be easily extended to high‐throughput and automatic format. The AuNP‐TS method is PCR‐free and therefore avoids the amplification‐related errors and becomes more reliable to evaluate telomerase activity. This assay has also been used for initial screening of telomerase inhibitors as anticancer drug agents.  相似文献   

19.
The immunological response of macrophages to physically produced pure Au and Ag nanoparticles (NPs) (in three different sizes) is investigated in vitro. The treatment of either type of NP at ≥10 ppm dramatically decreases the population and increases the size of the macrophages. Both NPs enter the cells but only AuNPs (especially those with smaller diamter) up‐regulate the expressions of proinflammatory genes interlukin‐1 (IL‐1), interlukin‐6 (IL‐6), and tumor necrosis factor (TNF‐α). Transmission electron microscopy images show that AuNPs and AgNPs are both trapped in vesicles in the cytoplasma, but only AuNPs are organized into a circular pattern. It is speculated that part of the negatively charged AuNPs might adsorb serum protein and enter cells via the more complicated endocytotic pathway, which results in higher cytotoxicity and immunological response of AuNPs as compared to AgNPS.  相似文献   

20.
New imaging probes with high sensitivity and stability are urgently needed to accurately detect sentinel lymph nodes (SLNs) for successful cancer diagnosis. Herein, the use of highly sensitive and stable PEGylated radionuclide‐embedded gold nanoparticles (PEG‐RIe‐AuNPs) is reported for the detection of SLNs by combined positron emission tomography and Cerenkov luminescence imaging (PET/CLI). PEG‐RIe‐AuNPs show high sensitivity and stability both in vitro and in vivo, and are not toxic to normal ovarian and immune cells. In vivo PET/CLI imaging clearly reveals SLNs as early as 1 h post PEG‐RIe‐AuNP‐injection, with peak signals achieved at 6 h postinjection, which is consistent with the biodistribution results. Taken together, the data provide strong evidence that PEG‐RIe‐AuNPs are promising as potential lymphatic tracers in biomedical imaging for pre and intraoperative surgical guidance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号