首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《Ceramics International》2016,42(13):14587-14594
A facile chemical deposition method has been adopted to prepare cerium fluoride (CeF3) surface modified LiNi1/3Co1/3Mn1/3O2 as cathode material for lithium-ion batteries. Structure analyses reveal that the surface of LiNi1/3Co1/3Mn1/3O2 particles is uniformly coated by CeF3. Electrochemical tests indicate that the optimal CeF3 content is 1 wt%. The 1 wt% CeF3-coated LiNi1/3Co1/3Mn1/3O2 can deliver a discharge capacity of 107.1 mA h g−1 even at 5 C rate, while the pristine does only 57.3 mA h g−1. Compared to the pristine, the 1 wt% CeF3-coated LiNi1/3Co1/3Mn1/3O2 exhibits the greatly enhanced capacity and cycling stability in the voltage range of 3.0–4.5 V, which suggests that the CeF3 coating has the positive effect on the high-voltage application of LiNi1/3Co1/3Mn1/3O2. According to the analyses from electrochemical impedance spectra, enhanced electrochemical performance is mainly because the stable CeF3 coating layer can prevent the HF-containing electrolyte from continuously attacking the LiNi1/3Co1/3Mn1/3O2 cathode and retard the passivating layer growth on the cathode.  相似文献   

2.
Elemental doping for substituting lithium or oxygen sites has become a simple and effective technique to improve the electrochemical performance of layered cathode materials. Compared with single-element doping, this work presents an unprecedented contribution to the study of the effect of Na+/F co-doping on the structure and electrochemical performance of LiNi1/3Mn1/3Co1/3O2. The co-doped Li1-zNazNi1/3Mn1/3Co1/3O2-zFz (z = 0.025) and pristine LiNi1/3Co1/3Mn1/3O2 materials were synthesized via the sol–gel method using EDTA as a chelating agent. Structural analyses, carried out by X-ray diffraction, Raman spectroscopy, and X-ray photoelectron spectroscopy, revealed that the Na+ and F dopants were successfully incorporated into the Li and O sites, respectively. The co-doping resulted in larger Li-slab spacing, a lower degree of cation mixing, and the stabilization of the surface structure, which substantially enhanced the cycling stability and rate capability of the cathode material. The Na/F co-doped LiNi1/3Mn1/3Co1/3O2 electrode delivered an initial specific capacity of 142 mAh g−1 at a 1C rate (178 mAh g−1 at 0.1C), and it maintained 50% of its initial capacity after 1000 charge–discharge cycles at a 1C rate.  相似文献   

3.
In this study, the LiCoO2/LiNi1/3Mn1/3Co1/3O2 mixed cathode electrodes were prepared and their electrochemical performances were measured in a high cut-off voltage. As the contents of LiNi1/3Mn1/3Co1/3O2 in the mixed cathode increases, the reversible specific capacity and cycleability of the electrode enhanced, but the rate capability deteriorated. On the contrary, the rate capability of the cathode enhanced but the reversible specific capacity and cycleability deteriorated, according to increasing the contents of LiCoO2 in the mixed cathode. The cell of LiCoO2/LiNi1/3Mn1/3Co1/3O2 (50:50, wt.%) mixed cathode delivers a discharge capacity of ca. 168 mAh/g at a 0.2 C rate. The capacity of the cell decreased with the current rate and a useful capacity of ca. 152 mAh/g was obtained at a 2.0 C rate. However, the cell shows very stable cycleability: the discharge capacity of the cell after 20th charge/discharge cycling maintains ca. 163 mAh/g.  相似文献   

4.
Spherical LiNi1/3Co1/3Mn1/3O2 cathode particles were resynthesized by a carbonate co-precipitation method using spent lithium-ion batteries (LIBs) as a raw material. The physical characteristics of the Ni1/3Co1/3Mn1/3CO3 precursor, the (Ni1/3Co1/3Mn1/3)3O4 intermediate, and the regenerated LiNi1/3Co1/3Mn1/3O2 cathode material were investigated by laser particle-size analysis, scanning electron microscopy–energy-dispersive spectroscopy (SEM-EDS), thermogravimetry–differential scanning calorimetry (TG-DSC), X-ray diffraction (XRD), inductively coupled plasma–atomic emission spectroscopy (ICP-AES), and X-ray photoelectron spectroscopy (XPS). The electrochemical performance of the regenerated LiNi1/3Co1/3Mn1/3O2 was studied by continuous charge–discharge cycling and cyclic voltammetry. The results indicate that the regenerated Ni1/3Co1/3Mn1/3CO3 precursor comprises uniform spherical particles with a narrow particle-size distribution. The regenerated LiNi1/3Co1/3Mn1/3O2 comprises spherical particles similar to those of the Ni1/3Co1/3Mn1/3CO3 precursor, but with a narrower particle-size distribution. Moreover, it has a well-ordered layered structure and a low degree of cation mixing. The regenerated LiNi1/3Co1/3Mn1/3O2 shows an initial discharge capacity of 163.5 mA h g?1 at 0.1 C, between 2.7 and 4.3 V; the discharge capacity at 1 C is 135.1 mA h g?1, and the capacity retention ratio is 94.1% after 50 cycles. Even at the high rate of 5 C, LiNi1/3Co1/3Mn1/3O2 delivers the high capacity of 112.6 mA h g?1. These results demonstrate that the electrochemical performance of the regenerated LiNi1/3Co1/3Mn1/3O2 is comparable to that of a cathode synthesized from fresh materials by carbonate co-precipitation.  相似文献   

5.
In this study, we have successfully coated the CeO2 nanoparticles (CeONPs) layer onto the surface of the Ni-rich layered LiNi0.7Co0.2Mn0.1O2 cathode materials by a wet chemical method, which can effectively improve the structural stability of electrode. The X-ray powder diffraction (XRD), transmission electron microscope (TEM), scanning electron microscope (SEM), and X-ray photoelectron spectroscopy (XPS) are used to determine the structure, morphology, elemental composition and electronic state of pristine and surface modified LiNi0.7Co0.2Mn0.1O2. The electrochemical testing indicates that the 0.3?mol% CeO2-coated LiNi0.7Co0.2Mn0.1O2 demonstrates excellent cycling capability and rate performance, the discharge specific capacity is 161.7?mA?h?g?1 with the capacity retention of 86.42% after 100 cycles at a current rate of 0.5?C, compared to 135.7?mA?h?g?1 and 70.64% for bare LiNi0.7Co0.2Mn0.1O2, respectively. Even at 5?C, the discharge specific capacity is still up to 137.1?mA?h?g?1 with the capacity retention of 69.0%, while the NCM only delivers 95.5?mA?h?g?1 with the capacity retention of 46.6%. The outstanding electrochemical performance is assigned to the excellent oxidation capacity of CeO2 which can oxidize Ni2+ to Ni3+ and Mn3+ to Mn4+ with the result that suppress the occurrence of Li+/Ni2+ mixing and phase transmission. Furthermore, CeO2 coating layer can protect the structure to avoid the occurrence of side reaction. The CeO2-coated composite with enhanced structural stability, cycling capability and rate performance is a promising cathode material candidate for lithium-ion battery.  相似文献   

6.
LiNi1/3Co1/3Mn1/3O2 and LiCoO2 cathode materials were synthesized by using a supercritical water (SCW) method with a metal salt solution in a batch reactor. Stoichiometric LiNi1/3Co1/3Mn1/3O2 was successfully synthesized in a 10-min reaction without calcination, while overlithiated LiCoO2 (Li1.15CoO2) was synthesized using the batch SCW method. The physical properties and electrochemical performances of LiNi1/3Co1/3Mn1/3O2 were compared to those of Li1.15CoO2 by means of X-ray diffraction (XRD), scanning electron microscopy (SEM), and charge/discharge cycling tests. The XRD pattern of LiNi1/3Co1/3Mn1/3O2 was found to be similar to that of Li1.15CoO2, showing clear splitting of the (0 0 6)/(1 0 2) and (1 0 8)/(1 1 0) peak pairs as particular characteristics of the layered structure. In addition, both cathode powders showed good crystallinity and phase purity, even though a short reaction time without calcination was applied to the SCW method. The initial specific discharge capacities of the Li1.15CoO2 and LiNi1/3Co1/3Mn1/3O2 powders at a current density of 0.24 mA/cm2 in 2.5-4.5 V were 149 and 180 mAh/g, and their irreversible capacity loss was 20 and 17 mAh/g, respectively. The discharge capacities of the Li1.15CoO2 and LiNi1/3Co1/3Mn1/3O2 powders decreased with cycling and remained at 108 and 154 mAh/g after 30 cycles, which are 79% and 89% of the initial capacities. Compared to the overlithiated LiCoO2 cathode powders, the LiNi1/3Co1/3Mn1/3O2 cathode powders synthesized by SCW method had better electrochemical performances.  相似文献   

7.
Despite Nickel-rich materials have all the advantages of high capacity, long cycle life and low cost, there is still a disadvantage that the capacity decreases rapidly as the number of cycles increases. In order to solve this problem, WO3 was uniformly coated on the surface of LiNi0.6Co0.2Mn0.2O2 cathode materials by wet coating, and its cycling performance was greatly improved with the higher capacity. The coated materials were analyzed by X-ray diffraction(XRD), Scanning electron microscope (SEM), high resolution Transmission electron microscopy (TEM) and X-ray photoelectron spectroscopy(XPS). The results showed that the coating thickness was around 3.15?nm, and some tungsten ions were doped into the lattice of the near surface area of the LiNi0.6Co0.2Mn0.2O2 material. In addition, the results of charge-discharge test showed that 1?wt%WO3 coating LiNi0.6Co0.2Mn0.2O2 had the best performance, and delivered a discharge capacity of 140 mAh g?1 (the capacity retention rate is 84.8%) in the potential interval of 2.8–4.3?V at 1?C (1?C?=?165?mA?g?1) after 200 cycles, while the bare cathode material only delivered a discharge capacity of 120 mAhg?1 (the capacity retention rate is 75%). The phenomenon indicates that the WO3 coating plays a role in inhibiting the harmful side reactions between the cathode material and the electrolyte, improving the electrochemical and structure stability of LiNi0.6Co0.2Mn0.2O2 cathode materials.  相似文献   

8.
The LiNi1/3Co1/3Mn1/3O2 powders required for the present study, obtained by coprecipitation method has been surface coated with boron and aluminum. The morphology and crystal structure of powders have been characterized using scanning electron microscopy, X-ray diffraction and X-ray photoelectron spectroscopy techniques. The elemental distribution of the coated samples analyzed by transmission electron microscopy images and nano secondary ion mass spectrometry indicates a thin uniform layer of [B, Al]2O3 on the surface of spherical LiNi1/3Co1/3Mn1/3O2. The surface-modified LiNi1/3Co1/3Mn1/3O2 has been explored as a cathode material for lithium secondary ion battery applications. The electrochemical charge–discharge results reveal that the capacity retention rate of coated LiNi1/3Co1/3Mn1/3O2 after 40 cycles at 1 C rate maintains 93% of the initial discharge capacity while the rate of bare LiNi1/3Co1/3Mn1/3O2 maintains only 88%. It is noticed that the small amounts of boron and aluminum coatings on the surface of LiNi1/3Co1/3Mn1/3O2 can significantly improve the electrochemical properties of electrode materials because of the suppression of reaction between the cathode and the electrolytes.  相似文献   

9.
LiNi1/3Co1/3Mn1/3O2 cathode materials have been coated with Al2O3 nano-particles using sol-gel processing to improve its electrochemical properties. The X-ray diffraction (XRD) pattern of the as-prepared Al2O3 nano-particles was indexed to the cubic structure of the γ-Al2O3 phase and had an average size of ∼4 nm. The XRD showed that the structure of LiNi1/3Co1/3Mn1/3O2 was not affected by the Al2O3 coating. However, the Al2O3 coatings on LiNi1/3Co1/3Mn1/3O2 improved the cyclic life performance and rate capability without decreasing its initial discharge capacity. These electrochemical properties were also compared with those of LiAlO2-coated LiNi1/3Co1/3Mn1/3O2 cathode material. The electrochemical impedance spectroscopy (EIS) was studied to understand the enhanced electrochemical properties of the Al2O3-coated LiNi1/3Co1/3Mn1/3O2 compared to uncoated LiNi1/3Co1/3Mn1/3O2.  相似文献   

10.
《Ceramics International》2022,48(3):3397-3403
The high-Ni layered metal oxide, LiNi0.8Co0.1Mn0.1O2 (LNCM811), has received widespread attention in the energy field because of its high specific capacity, but its large-scale applications are hindered due to severe capacity fading. Herein, a uniform and thin Li2O–B2O3–LiBr-glass (LBBrO-glass) coating was deposited on LNCM811 by a liquid-phase coating and thermal treatment method. The experimental results suggested that the LBBrO-glass coating acted as a protective layer that inhibited transition metal dissolution and side reactions, which helped improve the electrochemical properties of LNCM811. Remarkably, after 200 cycles, the 2 wt% coating (LBBrO@LNCM-2) delivered a superior capacity retention of 88.9%, while only 71.8% was obtained for the pristine material (LNCM811). The discharge capacity of LBBrO@LNCM-2 was 163.5 mAh g?1 at 5C, while it was only 139 mAh g?1 for the pristine material.  相似文献   

11.
The Ni-rich LiNi0.83Co0.12Mn0.05O2 (NCM83) cathode materials have drawn intensive attention due to the high energy density and low cost. However, Ni-rich LiNi1-x-yCoxMnyO2 still has the fatal weakness of poor cycle stability, limiting its further wide application. Bulk doping is an effective means to enhance the cycle stability, yet the electrochemical performances are very sensitive to the doping quantity. Here a facile method of co-precipitation is adopted to coat (Ni0.4Co0.2Mn0.4)1-xAlx(OH)2+x on precursor particles of NCM83. Al ions diffuse evenly in the NCM83 particles after sintering. The cells are operated at a high cut-off voltage of 4.5 V. The discharge capacity of NCM83 is 187.8 mAh g?1, and decays fast with cycles. The doped sample even exhibits a higher discharge capacity of 195 mAh g?1, and the capacity retention is improved to 83.8% after 200 cycles.  相似文献   

12.
LiNi0.33−xMn0.33Co0.33YxO2 materials are synthesized by Y3+ substitute of Ni2+ to improve the cycling performance and rate capability. The influence of the Y3+ doping on the structure and electrochemical properties are investigated by means of X-ray diffraction (XRD), scanning electron microscope (SEM), cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS), X-ray photoelectron spectroscopy (XPS) and galvanostatic charge/discharge tests. LiNi0.33Mn0.33Co0.33O2 exhibits the capacity retentions of 89.9 and 87.8% at 2.0 and 4.0 C after 40 cycles, respectively. After doping, the capacity retentions of LiNi0.305Mn0.33Co0.33Y0.025O2 are increased to 97.2 and 95.9% at 2.0 and 4.0 C, respectively. The discharge capacity of LiNi0.305Mn0.33Co0.33Y0.025O2 at 5.0 C remains 75.7% of the discharge capacity at 0.2 C, while that of LiNi0.33Mn0.33Co0.33O2 is only 47.5%. EIS measurement indicates that LiNi0.305Mn0.33Co0.33Y0.025O2 electrode has the lower impedance value during cycling. It is considered that the higher capacity retention and superior rate capability of Y-doped samples can be ascribed to the reduced surface film resistance and charge transfer resistance of the electrode during cycling.  相似文献   

13.
S. Zhang  C. Deng  B.L. Fu  L. Ma 《Powder Technology》2010,198(3):373-400
A carbonate co-precipitation method was employed to prepare spherical Li[Ni1/3Co1/3Mn1/3]O2 cathode material. The precursor, [Ni1/3Co1/3Mn1/3]CO3, was prepared using ammonia as chelating agent under CO2 atmosphere. The spherical Li[Ni1/3Co1/3Mn1/3]O2 was prepared by mixing the precalcined [Ni1/3Co1/3Mn1/3]CO3 with LiOH followed by high temperature calcination. The preparation conditions such as ammonia concentration, co-precipitation temperature, calcination temperature and Li/[Ni1/3Co1/3Mn1/3] ratio were varied to optimize the physical and electrochemical properties of the prepared Li[Ni1/3Co1/3Mn1/3]O2. The structural, morphological, and electrochemical properties of the prepared LiNi1/3Co1/3Mn1/3O2 were characterized by XRD, SEM, and galvanostatic charge-discharge cycling. The optimized material has a spherical particle shape and a well ordered layered structure, and it also has an initial discharge capacity of 162.7 mAh g− 1 in a voltage range of 2.8-4.3 V and a capacity retention of 94.8% after a hundred cycles. The optimized ammonia concentration, co-precipitation temperature, calcination temperature, and Li/[Ni1/3Co1/3Mn1/3] ratio are 0.3 mol L− 1, 60 °C, 850 °C, and 1.10, respectively.  相似文献   

14.
LiNi1/3Co1/3Mn1/3O2 was applied as a promising material to the all-solid-state lithium cells using the 80Li2S·19P2S5·1P2O5 (mol%) solid electrolyte. The cell showed the first discharge capacity of 115 mAh g−1 at the current density of 0.064 mA cm−2 and retained the reversible capacity of 110 mAh g−1 after 10 cycles. The interfacial resistance was observed in the impedance spectrum of the all-solid-state cell charged to 4.4 V (vs. Li) and the transition metal elements were detected on the solid electrolyte in the vicinity of LiNi1/3Co1/3Mn1/3O2 by the TEM observations with EDX analyses. The electrochemical performance was improved by the coating of LiNi1/3Co1/3Mn1/3O2 particles with Li4Ti5O12 film. The interfacial resistance was decreased and the discharge capacity was increased from 63 to 83 mAh g−1 at 1.3 mA cm−2 by the coating. The electrochemical performance of LiNi1/3Co1/3Mn1/3O2 was compared with that of LiCoO2, LiMn2O4 and LiNiO2 in the all-solid-state cells. The rate capability of LiNi1/3Co1/3Mn1/3O2 was lower than that of LiCoO2. However, the reversible capacity of LiNi1/3Co1/3Mn1/3O2 at 0.064 mA cm−2 was larger than that of LiCoO2, LiMn2O4 and LiNiO2.  相似文献   

15.
Nickel-rich layered materials are prospective cathode materials for use in lithium-ion batteries due to their higher capacity and lower cost relative to LiCoO2. In this work, spherical Ni0.8Co0.1Mn0.1(OH)2 precursors are successfully synthesized through a co-precipitation method. The synthetic conditions of the precursors - including the pH, stirring speed, molar ratio of NH4OH to transition metals and reaction temperature - are investigated in detail, and their variations have significant effects on the morphology, microstructure and tap-density of the prepared Ni0.8Co0.1Mn0.1 (OH)2 precursors. LiNi0.8Co0.1Mn0.1O2 is then prepared from these precursors through a reaction with 5% excess LiOH· H2O at various temperatures. The crystal structure, morphology and electrochemical properties of the Ni0.8Co0.1Mn0.1 (OH)2 precursors and LiNi0.8Co0.1Mn0.1O2 were investigated. In the voltage range from 3.0 to 4.3 V, LiNi0.8Co0.1Mn0.1O2 exhibits an initial discharge capacity of 193.0mAh g-1 at a 0.1 C-rate. The cathode delivers an initial capacity of 170.4 mAh g-1 at a 1 C-rate, and it retains 90.4% of its capacity after 100 cycles.  相似文献   

16.
Al2O3-modified LiNi0.5Co0.2Mn0.3O2 cathode material is successfully synthesized via a facile carboxymethyl cellulose (CMC)-assisted wet method followed by a high-temperature calcination process. Al concentration gradient doping and accompanying formation of Al-coating are simultaneously accomplished in the modified samples. XRD and EDS analysis demonstrate that Al element is successfully doped into the crystal lattice with concentration gradient distribution inside the particles, reducing the Li/Ni cation mixing and stabilizing the layered structure. The compact distribution of Al on the surface forms a protective layer between the electrodes and the electrolyte, prohibiting the harmful side reactions and phase transition on the interphase. Compared with the pristine, the modified material with 2000?ppm Al2O3 (Al-2000) shows the best high-voltage performance with the capacity retention increased by ~13.3% from 138.3 to 163.0 mAh g?1 at 1?C in 3.0–4.6?V after 100 cycles. Even under the high current rate of 8?C (1240 mAh g?1) after 200 cycles, the Al-2000 still exhibits a capacity retention of 88.6%, greater than 80.3% for the pristine. Furthermore, results from the cyclic voltammetry (CV) and the electrochemical impedance spectroscopy (EIS) measurements confirm the roles of the Al2O3 modification in decreasing polarization and electrochemical resistances, contributing to the kinetic process of electrodes.  相似文献   

17.
《Ceramics International》2022,48(18):26539-26545
As well established, the morphology and architecture of electrode materials greatly contribute to the electrochemical properties. Herein, a novel structure of mesoporous coral-like manganese (III) oxide (Mn2O3) is synthesized via a facile solvothermal method coupled with the carbonization under air. When fabricated as anode electrode for lithium-ion batteries (LIBs), the as-prepared Mn2O3 exhibits good electrochemical properties, showing a high discharge capacity of 1090.4 mAh g?1 at 0.1 A g?1, and excellent rate performance of 410.4 mAh g?1 at 2 A g?1. Furthermore, it maintains the reversible discharge capacity of 1045 mAh g?1 at 0.1 A g?1 after 380 cycles, and 755 mAh g?1 at 1 A g?1 after 450 cycles. The durable cycling stability and outstanding rate performance can be attributed to its unique 3D mesoporous structure, which is favorable for increasing active area and shortening Li+ diffusion distance.  相似文献   

18.
LiNi1/3Co1/3−xMxMn1/3O2 (M = Fe and Al; x = 0, 1/20, 1/9 and 1/6) have been synthesized by firing the co-precipitates of metal hydroxides. The impacts of Fe and Al doping on the structure and electrochemical performances of LiNi1/3Co1/3Mn1/3O2 are compared by means of powder X-ray diffraction (XRD), scanning electron microscopy (SEM), and galvanostatic charge/discharge test as cathode materials for lithium ion batteries. These materials keep the same layered structure as the LiNi1/3Co1/3Mn1/3O2 host. It is found that Fe- and Al-doped LiNi1/3Co1/3Mn1/3O2 show different characteristics in lattice parameter and cycling voltage plateau with increasing dopant dose. More interestingly, low Al doping (x < 1/20) improves the structural stability while Fe doping does not have such effect even at low Fe content.  相似文献   

19.
Relatively low capacity is a technological bottleneck of the development of sodium ion batteries. Herein, we present a series of hybrid layered cathode materials NaxLi1.5-xNi0.167Co0.167Mn0.67O2 (x?=?0.5, 0.6, 0.7, 0.8, 0.9, 1) with composite crystalline structures, which are prepared by co-precipitation method. The combined analysis of XRD, SEM and TEM reveals that the materials are composed of P2 structure, α-NaFeO2 structure and small amount of Li2MnO3. Among the as-prepared materials, Na0.6Li0.9Ni0.167Co0.167Mn0.67O2 delivers an initial reversible capacity of 222?mA?h?g?1 at 20?mA?g?1. Even at 100?mA?g?1, it shows a remarkable discharge capacity of 125?mA?h?g?1 in the first cycle and remains 60?mA?h?g?1 after 300 cycles. Such high capacity is achieved by the specific composite structure and sodium ions are proved to be able to intercalate/deintercalate in Li1.5Ni0.167Co0.167Mn0.67O2 with α-NaFeO2 structure. The Ex-situ XRD results of Na0.6Li0.9Ni0.167Co0.167Mn0.67O2 in the first cycle show that the P2 structure is well maintained along with irreversible phase transition of α-NaFeO2 structure, which is responsible for the long-term capacity fading. Owing to the high discharge capacity, the novel hybrid layered oxides NaxLi1.5-xNi0.167Co0.167Mn0.67O2 with composite structures can be considered as promising cathode materials to promote progress toward sodium-ion batteries.  相似文献   

20.
In order to get homogeneous layered oxide Li[Ni1/3Mn1/3Co1/3]O2 as a lithium insertion positive electrode material, we applied the metal acetates decomposition method. The oxide compounds were calcined at various temperatures, which results in greater difference in morphological (shape, particle size and specific surface area) and the electrochemical (first charge profile, reversible capacity and rate capability) differences. The Li[Ni1/3Mn1/3Co1/3]O2 powders were characterized by means of X-ray diffraction (XRD), charge/discharge cycling, cyclic voltammetry and SEM. XRD experiment revealed that the layered Li[Ni1/3Mn1/3Co1/3]O2 material can be best synthesized at temperature of 800 °C. In that synthesized temperature, the sample showed high discharge capacity of 190 mAh g−1 as well as stable cycling performance at a current density of 0.2 mA cm−2 in the voltage range 2.3-4.6 V. The reversible capacity after 100 cycles is more than 190 mAh g−1 at room temperature.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号