共查询到20条相似文献,搜索用时 0 毫秒
1.
This paper considers optimal consensus control problem for unknown nonlinear multiagent systems (MASs) subjected to control constraints by utilizing event‐triggered adaptive dynamic programming (ETADP) technique. To deal with the control constraints, we introduce nonquadratic energy consumption functions into performance indices and formulate the Hamilton‐Jacobi‐Bellman (HJB) equations. Then, based on the Bellman's optimality principle, constrained optimal consensus control policies are designed from the HJB equations. In order to implement the ETADP algorithm, the critic networks and action networks are developed to approximate the value functions and consensus control policies respectively based on the measurable system data. Under the event‐triggered control framework, the weights of the critic networks and action networks are only updated at the triggering instants which are decided by the designed adaptive triggered conditions. The Lyapunov method is used to prove that the local neighbor consensus errors and the weight estimation errors of the critic networks and action networks are ultimately bounded. Finally, a numerical example is provided to show the effectiveness of the proposed ETADP method. 相似文献
2.
Corentin Briat 《国际强度与非线性控制杂志
》2013,23(17):1932-1954
》2013,23(17):1932-1954
Copositive linear Lyapunov functions are used along with dissipativity theory for stability analysis and control of uncertain linear positive systems. Unlike usual results on linear systems, linear supply rates are employed here for robustness and performance analysis using L1‐gain and L∞‐gain. Robust stability analysis is performed using integral linear constraints for which several classes of uncertainties are discussed. The approach is then extended to robust stabilization and performance optimization. The obtained results are expressed in terms of robust linear programming problems that are equivalently turned into finite dimensional ones using Handelman's theorem. Several examples are provided for illustration. Copyright © 2012 John Wiley & Sons, Ltd. 相似文献
3.
This study proposes an analytical control method for the meeting of capacity constraints in discrete event systems with disturbances. More precisely, it consists of computing control laws for partially controllable and observable timed event graphs that are subject to marking constraints. To resolve the issue, linear Min-Plus models are used to describe the behavior of these graphs, and the constraints are expressed by inequalities in Min-Plus algebra. Sufficient conditions for the existence of causal control laws to guarantee marking specifications are established. Finally, to illustrate the efficiency of the proposed approaches in this paper, an application for a disassembly process with some disturbance inputs and limited component capacities is carried out. 相似文献
4.
This paper investigates the problem of an integrated fault detection system design for linear discrete time‐varying systems with bounded power disturbances. In the integrated design of residual generator and evaluator, an approximated energy constraint is first imposed on the bounded power disturbances, and then selected by solving a min–max problem to achieve minimal‐size set of undetectable faults under the condition of zero false alarms. To tackle the problem that the computational burden involved in solving the min–max optimization grows with time, the moving horizon method is proposed. The proposed approach in this paper has two advantages: (i) the approximated energy constraint on bounded power disturbances is explicitly selected as a min–max solution in the integrated design to improve fault detection rate; by contrast, when directly applying any existing fault detection method to the case of bounded power disturbances, a predefined approximated energy constraint is implicitly introduced without considering fault detection performance; (ii) the design objective of the proposed approach can choose to consider faults only in the recent time horizon rather than faults in the complete time horizon; this strategy enhances detection performance of recent faults and benefits early fault detection, but has not been considered by existing fault detection methods. Copyright © 2012 John Wiley & Sons, Ltd. 相似文献
5.
This paper proposes an online active set strategy for computing the dynamic programming solution to a min‐max robust optimal control problem with quadratic stage cost for linear systems with linear state and input constraints in the presence of bounded disturbances. The solver determines the optimal active constraint set for a given plant state using an iterative procedure that computes the optimal sequence of feedback laws for a candidate active set and updates the active set by performing a line search in state space. The computational complexity of each iteration depends linearly on the length of the prediction horizon. The main contribution of the paper is its treatment of degeneracy caused by linearly dependent state and input constraints, and its efficient handling is a crucial step in formulating the active set algorithm. The proposed approach ensures the continuity of optimal control laws along the line‐of‐search, thus enabling an efficient solution method based on homotopy. Conditions for global optimality are given, and the convergence of the active set solver is established using the geometric properties of an associated multiparametric programming problem. A receding horizon control strategy is proposed, which ensures a specified l2‐gain from the disturbance input to the state and control inputs in the presence of linearly dependent constraints. Copyright © 2016 John Wiley & Sons, Ltd. 相似文献
6.
Model predictive control (MPC) is capable to deal with multiconstraint systems in real control processes; however, the heavy computation makes it difficult to implement. In this paper, a dual‐mode control strategy based on event‐triggered MPC (ETMPC) and state‐feedback control for continuous linear time‐invariant systems including control input constraints and bounded disturbances is developed. First, the deviation between the actual state trajectory and the optimal state trajectory is computed to set an event‐triggered mechanism and reduce the computational load of MPC. Next, the dual‐mode control strategy is designed to stabilize the system. Both recursive feasibility and stability of the strategy are guaranteed by constructing a feasible control sequence and deducing the relationship of parameters, especially the inter‐event time and the upper bound of the disturbances. Finally, the theoretical results are supported by numerical simulation. In addition, the effects of the parameters are discussed by simulation, which gives guidance to balance computational load and control performance. 相似文献
7.
Most of the results to date in discrete event supervisory control assume a zero-or-infinity structure for the cost of controlling a discrete event system, in the sense that it costs nothing to disable controllable events while uncontrollable events cannot be disabled (i.e., their disablement entails infinite cost). In several applications however, a more refined structure of the control cost becomes necessary in order to quantify the tradeoffs between candidate supervisors. In this paper, we formulate and solve a new optimal control problem for a class of discrete event systems. We assume that the system can be modeled as a finite acylic directed graph, i.e., the system process has a finite set of event trajectories and thus is terminating. The optimal control problem explicitly considers the cost of control in the objective function. In general terms, this problem involves a tradeoff between the cost of system evolution, which is quantified in terms of a path cost on the event trajectories generated by the system, and the cost of impacting on the external environment, which is quantified as a dynamic cost on control. We also seek a least restrictive solution. An algorithm based on dynamic programming is developed for the solution of this problem. This algorithm is based on a graph-theoretic formulation of the problem. The use of dynamic programming allows for the efficient construction of an optimal subgraph (i.e., optimal supervisor) of the given graph (i.e., discrete event system) with respect to the cost structure imposed. We show that this algorithm is of polynomial complexity in the number of vertices of the graph of the system.Research supported in part by the National Science Foundation under grant ECS-9057967 with additional support from GE and DEC. 相似文献
8.
This paper presents a novel interpolation‐based model predictive control (IMPC) for constrained linear systems with bounded disturbances. The idea of so‐called ‘pre‐stabilizing’ MPC is extended by making interpolation among several ‘pre‐stabilizing’ MPC controllers, through which the domain of attraction can be magnificently enlarged. Compared with the standard ‘pre‐stabilizing’ MPC, the proposed approach has the advantage of combining the merits of having a large domain of attraction and a good behavior. Furthermore, such an IMPC problem can be solved off‐line by multi‐parametric programming. The optimal solution is given in an explicitly piecewise affine form. A simple algorithm for the implementation of the explicit MPC control laws is also proposed. Copyright © 2009 John Wiley & Sons, Ltd. 相似文献
9.
A method is presented for synthesizing output estimators and disturbance feedforward controllers for continuous‐time, uncertain, gridded, linear parameter‐varying (LPV) systems. Integral quadratic constraints are used to describe the uncertainty. Since the gridded LPV systems do not have a valid frequency‐domain interpretation, the time domain, dissipation inequality approach is followed. There are 2 main contributions. The first contribution is that a notion of duality is developed for the worst‐case gain analysis of uncertain, gridded LPV systems. This includes notions of dual LPV systems and dual integral quadratic constraints. Furthermore, several technical results are developed to demonstrate that the sufficient conditions for bounding the worst‐case gain of the primal and dual uncertain LPV systems are equivalent. The second contribution is that the convex conditions are derived for the synthesis of robust output estimators for uncertain LPV systems. The estimator synthesis conditions, together with the duality results, enable the convex synthesis of robust disturbance feedforward controllers. The effectiveness of the proposed method is demonstrated using a numerical example. 相似文献
10.
This paper addresses the problem of self‐triggered state‐feedback control for linear plants under bounded disturbances. In a self‐triggered scenario, the controller is allowed to choose when the next sampling time should occur and does so based on the current sampled state and on a priori knowledge about the plant. Besides comparing some existing approaches to self‐triggered control available in the literature, we propose a new self‐triggered control strategy that allows for the consideration of model‐based controllers, a class of controllers that includes as a special case static controllers with a zero‐order hold of the last state measurement. We show that our proposed control strategy renders the solutions of the closed‐loop system globally uniformly ultimately bounded. We further show that there exists a minimum time interval between sampling times and provide a method for computing a lower bound for it. An illustrative example with numerical results is included in order to compare the existing strategies and the proposed one. Copyright © 2014 John Wiley & Sons, Ltd. 相似文献
11.
In this paper, we consider the robust practical output regulation problem for a class of SISO uncertain linear minimum‐phase systems subject to external disturbances by an output‐based event‐triggered control law, where the reference inputs and the external disturbances are both generated by a so‐called exosystem with known dynamics. Our approach consists of two steps. First, on the basis of the internal model principle, we convert the problem into the robust practical stabilization problem of a well‐defined augmented system. Second, we design an output‐based event‐triggered mechanism and an output‐based event‐triggered control law to solve the stabilization problem, which in turn leads to the solvability of the original problem. What is more, we show that the event‐triggered mechanism prevents the Zeno behavior from happening. A numerical example is given to illustrate the design. Copyright © 2017 John Wiley & Sons, Ltd. 相似文献
12.
Bruno Boisseau John Jairo Martinez Thibaut Raharijaona Sylvain Durand Nicolas Marchand 《国际强度与非线性控制杂志
》2017,27(15):2492-2509
》2017,27(15):2492-2509
In this paper, a new event‐switched control method is presented for controlling discrete‐time linear systems subject to bounded disturbances. The main advantage of the proposed method is that the nominal performance of the controlled system with periodic control updates is kept in a framework that do not require to periodically update the control law. The feedback control loop can be opened as long a state‐dependent event condition is satisfied. This condition is obtained using set theory approaches. In particular, the concept of robustly positively invariant sets is used to calculate the nominal performance and the event condition. The simulation presented in this paper confirms the efficiency of the present approach. A reduction of the numerical complexity of the approach is also proposed. Copyright © 2016 John Wiley & Sons, Ltd. 相似文献
13.
The main objective of this paper is to revisit the operations and planning of an electric power system, and, more specifically, of its transmission system. The intent is to formulate the underlying problems as decision-making problems with specific performance objectives. Once this is done, it becomes possible to identify open research questions on this subject, including their dependence on the overall industry structure. 相似文献
14.
15.
具有有界扰动的有约束线性系统是一类常见的不确定系统. 针对此类系统, 本文借鉴扰动不变集方法, 通过离线设计两个椭圆不变集以降低以往设计的保守性, 进而提出一种有界扰动系统的高效鲁棒预测控制器(SD–ERPC)的设计方法. 该方法能够较好地处理扰动对系统的影响, 在减小控制器在线计算量的同时, 扩大原ERPC设计的初始可行域, 且具有较好的控制性能. 文中给出了SD–ERPC控制器可行性和鲁棒稳定性的理论证明,并通过仿真算例验证了该控制器的有效性. 相似文献
16.
本文将离散事件动态系统(DEDS)监控方法中的控制综合问题作了系统的分类,得到了六种控制综合问题,并将它们表示成泛函极值问题,讨论了它们的可行解,最优解的存在性,可生解集的结构以及相互之间的关系。 相似文献
17.
A bounded feedback control for asymptotic stabilization of linear systems is derived. The designed control law increases the feedback gain as the controlled trajectory converges towards the origin. A sequence of invariant sets of decreasing size, associated with a (quadratic) Lyapunov function, are defined and related to each of them, the corresponding possible highest gain is chosen, while maintaining the input bounded. Gains as functions of the position are designed by explicitly solving a c-parameterized programming problem. The proposed method allows global asymptotic stabilization of open-loop stable systems, with inputs subject to magnitude bounds and globally bounded rates. In the general case of linear systems that are asymptotic null controllable with bounded input, the semiglobal stabilization is also addressed taking into account the problem of semiglobal rate-limited actuators. The method is illustrated with the global stabilization of an inertial navigator, and the stabilization of a nonlinear model of a crane with hanging load. Copyright © 1999 John Wiley & Sons, Ltd. 相似文献
18.
19.
In this paper, we present DECM (Discrete Event Calculus Model), an original discrete event mathematical model for the specification of control systems at a high level of abstraction. Because the concept of event is more natural for nonspecialists than the concept of state, the proposed model is centered on the latter concept. This in turn permits the expression of asynchronous behavior without relying on the classical concept of state. In addition, DECM-based formalism offers an explicit representation of time that allows the use of timed simulations for the validation of formal specifications. This formalism is illustrated on a real-world industrial example. 相似文献
20.
The paper contributes with an original method of designing a control for discrete event systems modeled by a class of timed Petri nets. Precisely, this work deals with the closed loop control of Timed Event Graphs (TEGs) under specifications expressed with linear marking constraints. The objective of the controller is to limit the number of tokens in some places of these TEGs. The behavior of TEGs is represented by a system of difference equations that are linear in Min‐Plus algebra and the constraints are described by a set of inequalities, which are also linear in Min‐Plus algebra. A formal approach to design control laws that guarantee compliance with these marking constraints is proposed. For this, two sufficient conditions for the existence of control laws are proposed. The computed controls are causal feedbacks, which can be represented by a set of marked and timed places. The proposed method is illustrated in two applications: a manufacturing production line and an assembly system. 相似文献